Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì BAC = 90o
=> BA ⊥ AC
Mà HD ⊥ AB (gt)
=> AC // HD (từ vuông góc đến song song)
b, Vì AC // HD (cmt) => BHD = HCA = 30o
Vì AH ⊥ BC (gt) => AHB = 90o
Xét △BDH vuông tại D có: DBH + BHD = 90o (tổng 3 góc trong tam giác)
=> DBH + 30o = 90o
=> DBH = 60o
Xét △BAH vuông tại H có: BAH + ABH = 90o
=> BAH + 60o = 90o
=> BAH = 30o
hình tự vẽ
a, Xét tam giác AHB và AHC
AB=AC(đề bài)
góc BAH=HAC(AH là tia phân giác góc BAC)
AH là cạnh chung
=> tam giác AHB=AHC(C.G.C)
b,Vì tam giác AHB=AHC(câu a)
=> góc BHA=góc AHC( 2 cạnh tương ứng)
Mà BHA+ AHC=180 độ(2 góc kề bù)
=> BHA=AHC=1/2*180 độ
= 90 độ
=> AH vuông góc với BC.
Muốn DE song song BC: ta theo từ vuông góc đến song song
Với AH vuông góc BC
Xét tam giác như câu A ta có AHB = AHC- kề bù- bằng nhau> vuông góc
Với AH vuông góc DE
Đặt tên I là giao điểm của AH và DE
Ta xét tam giác ADH và AHE = nhau do(cạnh huyền - cạnh góc vuông)
Ta có: DHI = EHI và DH=HEvà HI cạnh chung
bằng nhau xong ta có
DIH=EIH mà kề bù-bằng nhau> vuông góc
Cả hai vuông vs AH thì kết luận Từ vuông góc đến song song
a) Vì \(\widehat{A}=90^o\rightarrow AB\perp AC\)
Mà \(HE\perp AC\)
-> AB song song với HE
b) Vì AB song song với HE (theo a)
=> \(\widehat{ABH}=\widehat{EHC}=50^o\)(2 góc đồng vị)
Ta có: \(\widehat{AHE}+\widehat{EHC}=\widehat{AHC}\)
\(\Rightarrow\widehat{AHE}+50^o=90^o\left(AH\perp BC\right)\)
\(\Rightarrow\widehat{AHE}=90^o-50^o=40^o\)
Vì AB song song với HE
=> \(\widehat{AHE}=\widehat{BAH}=40^o\)(2 góc so le trong)
a,Xét tam giác AHB và AHC có:AB=AC(gt)
góc AHB=AHC=90*
AH là cạnh chung.
Suy ra:tam giác AHB=AHC(cạnh huyền -cạnh góc vuông)
Suy ra:HB=HC(hai cạnh tương ứng) và góc CAH=BAH(hai góc tương ứng)
b.Vì HB=HC theo a.Suy ra: HB=HC=1/2BC= 1/2 *8 =4 (cm)
Xét tam giác AHB vuông tại H theo pi-ta -go ta có: AH^2= AB^2 - HB^2 hay AH^2 = 5^2 - 4^2 = 25 -16 = 9.Vậy AH = 3 (cm)
Xét tam giác ADH và AEH có:
góc DAH=EAH(theo a)
góc ADH=AEH =90*
AH là cạnh chung
Suy ra tam giác ADH =AEH (cạnh huyền góc nhọn).Suy ra HD = HE ( hai cạnh tương ứng ).Vậy tam giác HDE cân tại H
Suy ra AH đồng thời là đường phân giác ,đường trung tuyến,đường cao của tam giác (tính chất về đường phân giác,đường trung tuyến,đường trung trực,đường cao trong tam giác cân).Hay AH vuông góc với DE.Mà AH vuông góc với BC .Suy ra DE//BC ( hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng song song với nhau)
a, Tam giác ABC có AB=AC suy ra Tam giác ABC cân tại A
Có AH là đường cao đồng thời là đường trung tuyến, là đường phân giác(Tính chất tam giác cân)
hay HB=HC và góc HAB= góc HAC
b, HB=HC=1/2BC=4 cm
Áp dụng định lí pytago vào tam giác ABH ta có
AB^2=AH^2+BH^2
5^2 =AH^2+4^2
AH=3
c,
a, xét tam giác ABH à tg ACH có AH chung
^BAH = ^CAH do AH là pg
AB = AC (gt)
=> tg ABH = tg ACH (c-g-c)
b, tg ABH = tg ACH (câu a )
=> ^AHC = ^AHB
mà ^AHC + ^AHB = 180
=> ^AHC = 90
=> AH _|_ BC
c, xét tam giác ADH và tam giác AEH có : AE chung
^ADH = ^AEH = 90
^bah = ^cah
=> Tg ADH= tg AEH (ch-gn)
=> AE = AD
=> tg AED cân tại A => ^ADE = (180 - ^BAC) : 2
tg ABC cân tại A => ^ABC = (180 - ^bac) : 2
=> ^ade = abc
mà ^ade đồng vị ^abc
=> de // bc
đề bài có lỗi ko bạn ?
a, Vì tam giác ABC cân tại A
AH là đường cao nên đồng thời là đường phân giác
=> ^BAH = ^CAH
b, Vì tam giác ABC cân tại A nên AH đồng thời là đường trung tuyến
=> HB = HC = BC/2 = 4 cm
Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{9+16}=5cm\)
c, Xét tam giác AEH và tam giác ADH ta có :
^EAH = ^DAH (cmt)
AH_chung
^AEH = ^ADH = 900
Vậy tam giác AEH = tam giác ADH ( ch - gn )
=> AE = AD ( 2 cạnh tương ứng )
d, Ta có : \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)vì AE = AD ; AB = AC
=> ED // BC
mình cx k bt nx , tại thấy cô giao đề như thế nên mình cx chỉ bt lm theo thôi , và cảm ơn bn rất rất nhiều nha , mình đang bị bí ở bài này :3
Trả lời
a) Ta có:
AB = AE + EB
AC = AD + DC
Mà AB = AC (gt)
=> EB = DC
Xét ΔBDCΔBDC và ΔCEBΔCEB có:
EB = DC (cmt)
góc BDC = góc CEB = 900
BC là cạnh chung
Vậy: ΔBDCΔBDC = ΔCEBΔCEB (cạnh huyền - cạnh góc vuông)
b) Ta có: BC = BH + HC
=> BH = HC = BC2BC2 = 8282= 4 (cm)
Áp dụng định lí Py - ta - go vào ΔAHCΔAHC vuông tại H có:
AC2 = AH2 + HC2
AC2 = 32 + 42
AC2 = 9 + 16
AC2 = 25
AC = 25−−√25= 5 (cm)