K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

đây là bài thi HSG toán năm 2017-2018 của Vinh mà

23 tháng 4 2018

Mk cũng đang đau đầu lên với câu này bạn ạ!!!

12 tháng 4 2019

haizzz!câu hình của đề trường tớ:3

A B C M E D H K P / / // // /// /// O O X X G Q I

CÂU d kẻ điểm phụ +)Trên tia đối của HM lấy điểm P sao cho HM=HP

Gọi giao điểm của EB với AC là G,với DC là Q

P/S:gần đi hok rồi.tối về làm nốt cho:3

14 tháng 4 2019

câu c

Ta có:\(\widehat{EAD}=\widehat{EAC}+\widehat{CAD}=90^0+\widehat{CAD}=90^0+90^0-\widehat{BAC}=180^0-\widehat{BAC}\)

Mặt khác \(\widehat{BAC}+\widehat{ACI}=180^0\Rightarrow\widehat{ACI}=180^0-\widehat{BAC}\)

\(\Rightarrow\widehat{ACI}=\widehat{EAD}\)

Xét \(\Delta AIC\&\Delta AED:\hept{\begin{cases}CI=AD\\\widehat{ACI}=\widehat{AED}\\AC=AE\end{cases}\Rightarrow\Delta AIC=\Delta AED\left(c.g.c\right)}\)

\(\Rightarrow\widehat{AED}=\widehat{CAI}\)

Ta có:\(\widehat{CAI}+\widehat{EAI}=90^0\Rightarrow\widehat{AED}+\widehat{EAI}=90^0\RightarrowĐPCM\)

2 tháng 4 2019

Chỉ vô tình vào chém thôi

CM: BE vuông góc DC. dễ chứng minh bằng cặp tam giác bằng nhau

Có MH là đg tb tam giác BCE thì MH//BE và MH=1/2BE

MK là đg trung bình tam giác BDC thì MK//DC và MK=1/2CD

Do đó MK=MH do BE=DC

Và MK vuông góc MH

Bài 1: 

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: Ta có: ΔABD=ΔACE

nên AD=AE

Ta có: AE+EB=AB

AD+DC=AC

mà AB=AC
và AD=AE

nên EB=DC

Xét ΔEBO vuông tại E và ΔDCO vuông tại D có

EB=DC

\(\widehat{EBO}=\widehat{DCO}\)

Do đó: ΔEBO=ΔDCO

c: Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

DO đó:ΔABO=ΔACO

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC

30 tháng 10 2017
ΔΔ ADB vuông tại D nên: DBAˆ+DABˆ=900DBA^+DAB^=900 Lại có: EACˆ+DABˆ=1800−BACˆ=1800−900=900EAC^+DAB^=1800−BAC^=1800−900=900 ⇒⇒ DBAˆ=EACˆDBA^=EAC^ (1) ΔΔ ABC cân tại A nên AB = AC Kết hợp với (1) ⇒⇒ ΔADB=ΔCEAΔADB=ΔCEA (cạnh huyền - góc nhọn) ⇒BD=AE,AD=CE⇒BD=AE,AD=CE ⇒BD+CE=AE+AD=DE⇒BD+CE=AE+AD=DE b. ΔΔ AMB và ΔΔ AMC có: AB=ACAB=AC (ΔΔ ABC cân tại A) MB=MCMB=MC (M là trung điểm của BC) AM là cạnh chung ⇒ΔAMB=ΔAMC⇒ΔAMB=ΔAMC (c.c.c) ⇒MABˆ=MACˆ=900:2=450⇒MAB^=MAC^=900:2=450 Mà ΔΔ ABC vuông cân tại A nên: ABMˆ=450⇒MABˆ=ABMˆ=450ABM^=450⇒MAB^=ABM^=450 ⇒⇒ ΔΔ AMB vuông cân tại M ⇒⇒ MA=MBMA=MB Ta lại có: DBAˆ=EACˆ⇒DBAˆ+450=EACˆ+450DBA^=EAC^⇒DBA^+450=EAC^+450 ⇒DBAˆ+MBAˆ=EACˆ+MACˆ⇒MBDˆ=MAEˆ⇒DBA^+MBA^=EAC^+MAC^⇒MBD^=MAE^ Kết hợp với MA=MBMA=MB và BD=AEBD=AE ⇒⇒ ΔBDM=ΔAEMΔBDM=ΔAEM (c.g.c) ⇒BMDˆ=AMEˆ,MD=ME⇒BMD^=AME^,MD=ME (*) Lại có: DMAˆ+BMDˆ=DMAˆ+AMEˆ=900DMA^+BMD^=DMA^+AME^=900 (**) Từ (*) và (**) ta suy ra ΔΔ DME vuông cân tại M.
30 tháng 10 2017

tilado.edu.vn/student/facebook_view_question/code/747142 link đó bạn nào cần