Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn Đào Minh Quang ơi ! Bạn Lê Na làm đúng rồi đó ! Mình chắc chắn luôn
a) Ta có góc A=90 độ=>ABC+ACB=90.Mà góc ABD=1/3ABC và góc ACE=1/3ACB Nên góc ECB+ góc DBC=2/3.90=60 độ . Nên góc BFC=180-60=120.
b)gọi giao điểm giữa BD và EI là G . góc góc BFE=180-BFC=180-120=60 . Mà góc BFI=1/2.120=60 độ (vì FI là tia phân giác)=>góc BFE= góc BFI Nên tam giác BFE=BFI(g-c-g)=>BE=BI<=> tam giác BEI là tam giác đều=>góc BEI=góc BIE. tam giác BEG=tam giác BIG(g-c-g) =>EG=IG và góc BGE=góc BGI mà góc BGI+góc IGD=180 độ và góc BGE+ gócEGD=180 độ =>góc IGD=góc EGD(vì BGE=BGI).tam giác EGD=tam giác IGD(c_g_c) => DE=DI =>tam giác DEI là tam giác cân .xong tu tim goc nao do 60 do chu minh ko bik tim nua thong cam!
Kẻ DM ∟ AC sao cho DM = AB.
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c)
=> ^DCM = ^AEB và BE = MC (1)
Δ BMD = Δ BED (c - g - c)
=> ^BMD = ^BED và BM = BE (2)
(1) và (2) cho:
^DCM = ^BMD và CM = MB
=> Δ BMC cân tại M
mà ^DMC + ^DCM = 90o (Δ MDC vuông)
=> ^DMC + ^BMD = 90o
=> Δ BMC vuông cân.
=> BCM = 45o
Mà ^ACB + ^DCM = ^BCM
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt))
Cách 2:
Đặt AB = a
ta có: BD = a√2
Do DE/DB = DB/DC = 1/√2
=> Δ DBC đồng dạng Δ DEB (c - g - c)
=> ^DBC = ^DEB
Δ BDC có ^ADB góc ngoài
=> ^ADB = ^DCB + ^DBC
hay ^ACB + ^AEB = 45o
Cách 3
ta có:
tanAEB = AB/AE = 1/2
tanACB = AB/AC = 1/3
tan (AEB + ACB) = (tanAEB + tanACB)/(1 - tanAEB.tanACB)
= (1/2 + 1/3)/(1 - 1/2.1/3) = 1 = tan45o
Vậy ^ACB + ^AEB = 45o
Kẻ DM ∟ AC sao cho DM = AB.
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c)
=> ^DCM = ^AEB và BE = MC (1)
Δ BMD = Δ BED (c - g - c)
=> ^BMD = ^BED và BM = BE (2)
(1) và (2) cho:
^DCM = ^BMD và CM = MB
=> Δ BMC cân tại M
mà ^DMC + ^DCM = 90o (Δ MDC vuông)
=> ^DMC + ^BMD = 90o
=> Δ BMC vuông cân.
=> BCM = 45o
Mà ^ACB + ^DCM = ^BCM
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt))
Gọi Fx là tia đối của tia FA
Do tính chất góc ngoài của tam giác, ta có
\(\hept{\begin{cases}\widehat{xFb}=\widehat{fAb}+\widehat{aBf}\\\widehat{xFc}=\widehat{fAc}+\widehat{aCf}\end{cases}}\)
Nên \(\widehat{xFb}+\widehat{xFc}=\widehat{fAb}+\widehat{fAc}+\widehat{aBf}+\widehat{aCf}\)
Do đó \(\widehat{bFc}=\widehat{bAc}+\frac{1}{3}\left\{\widehat{aBc}+\widehat{aCb}\right\}\)
\(=90^o+\frac{1}{3}90^o=120^o\)
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
tao deo hieu
Vẽ 2 tia phân giác của ^MCB và ^MBC, ta được: ^B1=^B2=^B3=1/3^ABC và ^C1=^C2=^C3=1/3^ACB.
Ta có: ^C1=1/3^ACB => ^C2+^C3=1-1/3^ACB=2/3^ACB => ^MCB=2/3^ACB (1)
Xét tam giác ABC: ^BAC=900 => ^ABC+^ACB=900 => ^ACB=900-^ABC=900-300=600=> ^ACB=600.
Thay ^ACB=600 vào (1), ta có: ^MCB=2/3.600=400.
Tương tự: ^B1=1/3^ABC => ^B2+^B3=2/3^ABC => ^MBC=2/3^ABC (2)
Thay ^ABC=300 vào (2), ta có: ^MBC=2/3.300=200.
Xét tam giác CMB: ^CMB=1800-(^MCB+^MBC)=1800-(400+200)=1800-600=1200 => ^CMB=1200.
Mà ^CMB=^DME (Đối đỉnh) => ^DME=1200.
N là giao của 2 đường phân giác của ^MBC và ^MCB trong tam giác CMB => MN là phân giác ^CMB.
=> ^M1=^M2=^CMB/2=1200/2=600 (3)
Lại có: ^CDM là góc ngoài của tam giác ADB => ^CDM=^DAB+^ABD=900+1/3ABC.
^ABC=300=>1/3^ABC=100. Thay cào biểu thức trên: ^CDM=900+100=1000.
^C1=1/3^ACB => ^C1=1/3.600=200. Xét tam giác DCM: ^DMC=1800-(^CDM+^C1)=1800-(1000+200)=600 => ^DMC=600 (4)
Từ (3) và (4) => ^M1=^M2=^DMC=600, mà ^EMB=^DMC => ^M2=^EMB=600.
Xét tam giác CDM và tam giác CNM có:
^C1=^C2=1/3^ACB
Cạnh CM chung => Tam giác CDM = Tam giác CNM (g.c.g)
^DMC=^M1=600
=> DM=NM (2 cạnh tương ứng) (5)
Xét tam giác BEM và tam giác BNM có:
^B1=^B2=1/3^ABC
Cạnh BM chung => Tam giác BEM = Tam giác BNM (g.c.g)
^EMB=^M2=600
=> EM=NM (2 cạnh tương ứng) (6)
Từ (5) và (6) => DM=EM=NM => Tam giác MDE cân tại M => ^MDE=^MED=(1800-^DME)/2
Thay ^DME=1200 vào biểu thức trên, ta có: ^MDE=^MED=(1800-1200)/2=600/2=300.
Vậy các góc của tam giác MDE là: ^DME=1200, ^MDE=^MED=300.
Ai hiểu rồi thì k nha.