Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc APH=góc AQH=góc PAQ=90 độ
=>APHQ là hình chữ nhật
=>PQ=AH
b: Xét ΔHED có HQ/HE=HP/HD
nên QP//ED và QP/ED=HQ/HE=1/21
=>PQ=1/2ED
a)Ta có : CA vuông góc AB(gt) và HP vuông góc AB(gt) => CA //HP => góc PHA=góc HAQ(so le trong).
Xét tam giác vuông AHP và tam giác vuông HAQ có:
Cạnh HA chung
góc PHA=góc HAQ(cmt)
Do đó: tam giác AHP=tam giác HAQ(cạnh huyền-góc nhọc).
=> HP=AQ(hai cạnh tương ứng) và AP=HQ(hai cạnh tương ứng).
Ta có : PH=PD(gt) và PH=AQ(cmt) nên PD=AQ
QH=QE(gt) và HQ=AP(cmt) nên QE=AP
Xét hai tam giác vuông DPA và tam giác vuông AQE có:
PD=AQ(cmt)
QE=AP(cmt)
Do đó:tam giác DPA=tam giác AQE(hai cạnh góc vuông)
=>AD=AE(hai cạnh tương ứng)
hay A là trung điểm của DE>
b)Trong tam giác HDE có : P là trung điểm DH và Q là trung điểm HE => PQ là đường trung bình => PQ=1/2DE.
c)Tam giác HDE có PQ là đường trung bình => PQ=1/2DE=DA (1).
Trong tam giác ADH có AP là trung tuyến(PD=PH) đồng thời AP là đường cao=>Tam giác ADH cân=>AD=AH (2).
Từ (1) và (2), suy ra PQ=AH.
a)Ta có : CA vuông góc AB(gt) và HP vuông góc AB(gt) => CA //HP => góc PHA=góc HAQ(so le trong).
Xét tam giác vuông AHP và tam giác vuông HAQ có:
Cạnh HA chung
góc PHA=góc HAQ(cmt)
Do đó: tam giác AHP=tam giác HAQ(cạnh huyền-góc nhọc).
=> HP=AQ(hai cạnh tương ứng) và AP=HQ(hai cạnh tương ứng).
Ta có : PH=PD(gt) và PH=AQ(cmt) nên PD=AQ
QH=QE(gt) và HQ=AP(cmt) nên QE=AP
Xét hai tam giác vuông DPA và tam giác vuông AQE có:
PD=AQ(cmt)
QE=AP(cmt)
Do đó:tam giác DPA=tam giác AQE(hai cạnh góc vuông)
=>AD=AE(hai cạnh tương ứng)
hay A là trung điểm của DE>
b)Trong tam giác HDE có : P là trung điểm DH và Q là trung điểm HE => PQ là đường trung bình => PQ=1/2DE.
c)Tam giác HDE có PQ là đường trung bình => PQ=1/2DE=DA (1).
Trong tam giác ADH có AP là trung tuyến(PD=PH) đồng thời AP là đường cao=>Tam giác ADH cân=>AD=AH (2).
Từ (1) và (2), suy ra PQ=AH.
Hok tốt nhaaaa ~
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình
=>DE//BC và DE=1/2BC
=>DE//MC và DE=MC
Xét tứ giác DMCE có
DE//MC
DE=MC
Do đó: DMCE là hình bình hành
c: ΔHAC vuông tại H có HE là trung tuyến
nên \(HE=\dfrac{1}{2}AC\)
mà \(MD=\dfrac{1}{2}AC\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
nên DHME là hình thang
mà HE=MD
nên DHME là hình thang cân
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
EA=EH
DA=DH
Do đó: ED là đường trung trực của AH
Bài 1:
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
Suy ra: AM=DE
b: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
D là trung điểm của AB
Do đó: MD là đường trung bình
=>MD//CE và MD=CE
hayDMCE là hình bình hành