K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

A B C D H E F K

Xét tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 (đl)

góc BAC = 80(Gt); góc ABC = 60 (gt)

=> góc ACB = 180 - 80 - 60 = 40

=> góc ACB < góc ABC < góc BAC ; tam giác ABC 

=> AB < AC < BC (đl)

b, xét tam giác ABE và tam giác DBE có : BE chung

AB = BD (gt)

góc ABE = góc DBE do BE là phân giác của góc ABC (gt)

=> tam giác ABE = tam giác DBE (c-g-c)

c,  xét tam giác BAD có : AB = BD (gt) => tam giác BAD cân tại B (đn)

mà góc ABC = 60 (gt)

=> tam giác BAD đều (tc)

=> AD = AB (Đn)

BE là phân giác của góc ABC (Gt) => góc ABE = 1/2.góc ABC mà góc ABC = 60 (gt)

=> góc ABE = 12.60 = 30 

Xét tam giác ABE có : góc ABE + góc AEB + góc BAE = 180 (đl)

góc BAE = 80 (gt)

=> góc AEB = 180 - 80 - 30 = 70 

=> góc AEB < góc BAE ; tam giác BAE 

=> AB < BE hay AD < BE (đl)

d,  không biết

11 tháng 6 2021

câu d mình chỉ biết là dùng tính chất 3 đường trung tuyến thui.

22 tháng 11 2021

c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)

và ABK = ADK (2 góc tương ứng)

Mà ABK + KBE = 180o (kề bù)

ADK + KDC = 180o (kề bù)

nên KBE = KDC

Xét Δ KBE và Δ KDC có:

BE = CD (gt)

KBE = KDC (cmt)

BK = DK (cmt)

Do đó, Δ KBE = Δ KDC (c.g.c)

=> BKE = DKC (2 góc tương ứng)

Lại có: BKD + DKC = 180o (kề bù)

Do đó, BKE + BKD = 180o

=> EKD = 180o

hay 3 điểm E, K, D thẳng hàng (đpcm)

22 tháng 11 2021

mik chỉ bt câu c thui

 

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

a: \(\widehat{C}=180^0-60^0-80^0=40^0\)

Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)

nên BC>AC>AB

b: Xét ΔABD và ΔMBD có 

BA=BM

\(\widehat{ABD}=\widehat{MBD}\)

BD chung

Do đó:ΔABD=ΔMBD

c: Xét ΔADH và ΔMDC có 

\(\widehat{DAH}=\widehat{DMC}\)

AD=MD

\(\widehat{ADH}=\widehat{MDC}\)

DO đó:ΔADH=ΔMDC

Suy ra: DH=DC

hay ΔDCH cân tại D

a: ΔABC can tại A

mà AD là trung tuyến

nên AD là phân giác

b: Xet ΔABE và ΔACF có

AB=AC
góc BAE chung

AE=AF
=>ΔABE=ΔACF

=>góc ABE=góc ACF=1/2*góc ABC

=>BE là phân giác của góc ABC

c: Xet ΔABC có

BE,CF,AD là phân giác

=>BE,CF,AD đồng quy

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE
=>D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

b: Sửa đề: AF=EC

Ta có: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó;ΔDAF=ΔDEC

=>AF=EC

c: Sửa đề: CM AE//CF

Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF
d: Sửa đề: I là trung điểm của FC

Ta có: IF=IC

=>I nằm trên đường trung trực của CF(3)

Ta có: DF=DC(ΔDAF=ΔDEC)

=>D nằm trên đường trung trực của CF(4)

ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(5)

Từ (3),(4),(5) suy ra B,D,I thẳng hàng

23 tháng 1

Help me

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên DA=DE

hay D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

nên B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trực của AE

hay BD⊥AE

c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: AF=EC