Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
gốc BAD=30*; góc ACB=30*
b
chứng minh ▲KCB=▲ABC
=>> AB=CK
c
chứng minh tương tự như câu b
d
xét ▲ABC vuông tạ A => cos60*=AB/BC
=>> BC=2AB
Mình nói tóm tắt thôi nhé!
a) chứng minh được tam giác ABD = tam giác HBD (cạnh huyền - góc nhọn) => AD = DH (2 cạnh tương ứng)
b) tam giác HDC vuông tại H nên DC là cạnh lớn nhất => DC > DH; mà DH = AH (c/m trên) => DC > AD
c) Mình chưa nghĩ ra
Câu c là tính HC nhé bạn!
c) Tính BC bằng cách dùng định lí pytago trong tam giác ABC, ta có: BC = 10cm
BH + HC = BC = 10cm
BH = AB = 6cm
=> HC = 10 - 6 = 4 cm
Chúc bạn học tốt!
- MÔN ĐẠI CƯƠNG
- ÔN THI ĐẠI HỌC
- TOÁN HỌC
- NGỮ VĂN
- ANH VĂN
- VẬT LÝ
- HÓA HỌC
- SINH HỌC
- LỊCH SỬ
- ĐỊA LÝ
- TRUYỆN CỔ TÍCH
- Sóng - Xuân Quỳnh
- Đàn ghi ta của Lor-ca - Thanh Thảo
Bài 42 trang 73 sgk toán lớp 7- tập 2
Cập nhật lúc: 08/07/2014 17:21 pm Danh mục: Toán lớp 7
Chứng minh định lí- Bài 38 trang 73 sgk toán lớp 7- tập 2
- Bài 40 trang 73 sgk toán lớp 7- tập 2
- Bài 36 trang 72 sgk toán lớp 7- tập 2
- Bài 42 trang 73 sgk toán lớp 7- tập 2
- Bài 39 trang 73 sgk toán lớp 7- tập 2
Xem thêm: Tính chất ba đường phân giác của tam giác
42. Chứng minh định lí : Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân
Gợi ý : Trong ∆ABC, nếu AD vừa là đường trung tuyến vừa là đường phân giác thì kéo dài AD một đoạn AD1 sao cho DA1 = AD
Hướng dẫn:
Giả sử ∆ABC có AD là phân giác và DB = DC, ta chứng minh ∆ABC cân tại A
Kéo dài AD một đoạn DA1 = AD
Ta có: ∆ADC = ∆A1DC (c.g.c)
Nên
mà (gt)
=>
=> ∆ACA1 cân tại C
Ta lại có: AB = A1C ( ∆ADB = ∆A1DC)
AC = A1C ( ∆ACA1 cân tại C)
=> AB = AC
Vậy ∆ABC cân tại A
Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân
Sửa đề; BC=12cm
a: Xét ΔABD có \(\widehat{B}=\widehat{BAD}=60^0\)
nên ΔABD đều
=>BD=AB=6cm
=>BH=3cm
b: Ta có: BD+DC=BC
nên DC=BC-BD=12-6=6(cm)
Xét ΔDAC có DA=DC
nên ΔDAC cân tại D
c: Xét ΔABC có
AD là đường trung tuyến
AD=BC/2
Do đó: ΔABC vuông tại A
Bạn tự vẽ hình nghen
Vì AD là phân giác của \(\widehat{BAC}\) nên \(\widehat{BAD}=\widehat{DAC}=30\) độ
Ta có SABD=\(\frac{1}{2}\times AB\times AD\times\sin\widehat{BAD}\) (1)
SADC=\(\frac{1}{2}\times AD\times AC\times\sin\widehat{DAC}\) (2)
SABC=\(\frac{1}{2}\times AB\times AC\times\sin\widehat{BAC}\) (3)
từ (1),(2) và (3) , ta suy ra:\(\frac{1}{2}AD\times\left(AB+AC\right)\times\sin30=AB\times AC\times\sin60\)
\(\Rightarrow AD\times\frac{1}{2}\times12\sqrt{3}=96\times\frac{\sqrt{3}}{2}\)\(\Rightarrow AD=8\)
Vậy AD=8(đvd)
á chết đoạn kia thiếu 1 phần 2 bạn tự thế vào tính nghen