Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AMB và AMC có:
AB=AC (Giả thiết)
AM là cạnh chung)
MB=MC(Giả thiết)
=> tam giác AMB = tam giác AMC (c.c.c)
a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)
b: XétΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
Xét tam giác ABC có
AB = AC ( = 5 cm )
=> tam giác ABC cân tại A ( ĐN)
Ta có AM là trung tuyến (gt)
=> AM là đg cao (t/c tam giác cân)
=> AM vuông BC (ĐN)
Ta có M là trung điểm của BC(AM là trung tuyến)
=> BM=CM=1/2 BC=6/2=3cm
Xét tam giác ABM có
AM vuông BC (cmt)
=> tam giác ABM vuông tại M (ĐN)
=> AM2 +BM2 = AB2 (đ/l Pitago)
Thay số: AM2 + 3 = 5
=> AM2= 5-3
=> AM2= 2
=> AM = \(\sqrt{2}\)(cm)
b) tam giác \(ABM\ne DCM\)
c) tam giác ACD ko cân
Xét tứ giác ABIC có
M là trung điểm của AI
M là trung điểm của BC
Do đó: ABIC là hình bình hành
Suy ra: CI=AB(1)
Xét ΔABE có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔABE cân tại B
=>BA=BE(2)
Từ (1) và (2) suy ra BE=CI
a: AI+IM=AM
=>AM=2IM+IM=3IM
=>\(\dfrac{AI}{AM}=\dfrac{2}{3}\)
Xét ΔABC có
AM là đường trung tuyến
\(AI=\dfrac{2}{3}AM\)
Do đó: I là trọng tâm của ΔABC
Xét ΔABC có
I là trọng tâm
CI cắt AB tại P
Do đó: P là trung điểm của AB
=>PA=PB
b:
Xét ΔPIA và ΔPKB có
PI=PK
\(\widehat{IPA}=\widehat{KPB}\)(hai góc đối đỉnh)
PA=PB
Do đó: ΔPIA=ΔPKB
=>KB=AI
=>\(KB=\dfrac{2}{3}AM\)