Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có AB=AC=5
=> ΔABC cân tại A
ta có AM là trung tuyến => AM là đường phân giác của góc A (tc Δ cân)
=>\(\widehat{B}=\widehat{C}\)(tc)
Xét ΔABM và ΔACM có
AB=AC gt
có AM là trung tuyến => BM=CM
\(\widehat{B}=\widehat{C}\) (cmt)
=>ΔABM = ΔACM (cgc)
b) có ΔABC cân
mà AM là trung tuyến => AM là đường cao (tc Δ cân)
c) ta có AM là trung tuyến =>
M là trung điểm của BC
=> BM=CM=\(\dfrac{BC}{2}=\dfrac{6}{2}=3\)cm
Xét ΔABM có AM là đường cao => \(\widehat{AMB}=\)90o
=> AM2+BM2=AB2
=> AM2+32=52
=> AM =4 cm
d) Xét ΔBME và ΔCMF có
\(\widehat{MEB}=\widehat{MFC}=\)90o (ME⊥AB,MF⊥AC)
BM=CM (cmt)
\(\widehat{B}=\widehat{C}\)
=>ΔBME = ΔCMF (ch-cgv)
=>EM=FM( 2 góc tương ứng)
Xét ΔMEF có
EM=FM (cmt)
=> ΔMEF cân tại M
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
b: BM=CM=BC/2=6cm
nên AM=8(cm)
a, Ta có AM là trung tuyến của tam giác cân ABC =>AM Đồng thời là đường phân giác và đường trung trực.
b, T a có AM là đường trung trực của tam giác ABC=> góc AMC= 90độ
=> BM=CM=1/2BC=1/2x12=6(cm)
Áp dụng định lý py ta go vào tam giác vuông AMC ta có
AM2+CM2=AC2thay CM=6cm(CMT); AC=10cm(GT)
=>AM2+62=102
=>AM2+36=100
=>AM2 = 100-36=64=82
=>AM =8(cm)
Dễ và cơ bản mà nhỉ:vv
a) Xét ∆ABM và ∆ACM:
AB=AC (∆ABC cân tại A)
BM=CM (AM là trung tuyến)
\(\widehat{ABM}=\widehat{ACM}\) (∆ABC cân tại A)
=> ∆ABM=∆ACM (c.g.c)
b) Theo câu a: ∆ABM=∆ACM
=> \(\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (2 góc kề bù)
=> \(\widehat{AMB}=\widehat{AMC}=90^o\)
=> AM vuông góc với BC
c) M là trung điểm của BC
=> \(MB=MC=\dfrac{BC}{2}=\dfrac{6}{2}=3\)
Áp dụng định lý Py-ta-go vào ∆ABM, ta có:
\(AB^2=AM^2+BM^2\)
\(\Leftrightarrow5^2=AM^2+3^2\Rightarrow AM^2=5^2-3^2=16=4^2\)
\(\Rightarrow AM=4\) (cm)
Vậy AM=4cm.
b) Cm theo cách khác:
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM\(\perp\)BC(đpcm)
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: ΔAMB=ΔAMC
=>góc MAB=góc MAC
=>AM là phân giác của góc BAC
ΔABC cân tại A có AM là trung tuyến
nên AM vuông góc BC
c: góc BAM=góc CAM=40/2=20 độ
góc B=góc C=90-20=70 độ
d: Xét ΔAEM và ΔAFM có
AE=AF
góc EAM=góc FAM
AM chung
=>ΔAEM=ΔAFM
=>ME=MF
=>ΔMEF cân tại M