K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2021

Xét đường tròn (O) có: AM và AN là 2 tiếp tuyến cắt nhau tại A (gt)

\(\Rightarrow\) AM = AN (t/c 2 tiếp tuyến cắt nhau)

Mà AM = \(\dfrac{1}{2}\)AC; AN = \(\dfrac{1}{2}\)AB

\(\Rightarrow\) AB = AC

Xét tam giác ABC có: AB = AC (cmt)

\(\Rightarrow\) tam giác ABC cân tại A (đ/lí tam giác cân)

Chúc bn học tốt!

5 tháng 3 2021

Trung úy à! Ngay từ dòng đầu tiên bạn không thấy nó có vấn dề sao?

5 tháng 3 2021

CM được \(\Delta\)ABC cân tại A (theo Cho tam giác ABC có đường tròn tiếp xúc với hai cạnh AB, AC và với hai trung tuyến BM, CN( M thuộc AC, N thuộc AB). Chứn... - Hoc24)

\(\Rightarrow\) AB = AC (t/c) (1)

Mà: M là trung điểm của AC; N là trung điểm của AB

\(\Rightarrow\) AM = AN (2)

Ta có: SAMB = SANC

\(\Rightarrow\) AM.MB = AN.NC

\(\Rightarrow\) \(\dfrac{AM}{AN}=\dfrac{NC}{MB}\)

Mà: AM = AN

\(\Rightarrow\) \(\dfrac{NC}{MB}=\dfrac{AM}{AM}=1\)

\(\Rightarrow\) NC = MB (3)

Cộng 2 vế của (1); (2); (3) ta được:

AM + MB + AB = AN + NC + AC (đpcm)

Chúc bn học tốt!

25 tháng 2 2018

Tự vẽ hình lấy chứ hình nó khó vẽ trên này lắm thông cảm 

 a) P và Q là tâm đường tròn nội tiếp các tam giác đồng dạng AHB và CHA nên

\(\frac{HP}{HQ}=\frac{AB}{AC}\)nên \(\Delta HPQ~\Delta ABC\left(c-g-c\right)\)

b) Từ câu a suy ra \(\widehat{HPQ}=\widehat{C}\)mà \(\widehat{C}=\widehat{A_1}\)

Nên \(\widehat{HPQ}=\widehat{A_1}\)( 1 )

Tứ giác HPKQ có \(\widehat{PHQ}=\widehat{PKQ}=90^o\)nên là tứ giác nội tiếp, suy ra \(\widehat{HPQ}=\widehat{HKP}\)( 2 )

Từ (1) VÀ (2) suy ra \(\widehat{A_1}=\widehat{HKP}\)do đó KP // AB. Chứng minh tương tự, KQ // AC.

c) Ta có : \(\widehat{C}=\widehat{HKP}=\widehat{MKP}\)tự chứng minh \(\widehat{MKP}=\widehat{M_1}\)(sử dụng kết quả ở câu b).

d) Ta có : \(\widehat{A_1}=\widehat{M_1}\left(=\widehat{C}\right)\)nên KM = KA. Tương tự KP =KA. Do đó năm điểm A, M, P, Q, N thuộc đường tròn (K; KA).

e) Từ câu a suy ra \(\widehat{HQP}=\widehat{C}\)nên HQEC là tứ giác nội tiếp, do đó \(\widehat{QEA}=\widehat{QHC}=45^o\)

Tam giác ADE có : \(\widehat{E}=45^o\)

\(\Rightarrow\) ADE là tam giác vuông cân.

25 tháng 2 2018

à câu cuối còn một cách nữa :)

Chứng minh \(BP\perp AQ\)tương tự ta cũng chứng minh \(CQ\perp AP\)

\(\Rightarrow\)\(AO\perp PQ\)(O là giao điểm của BP và CQ). Tam giác ADE có AO là tia phân giác góc A và \(AO\perp DE\)

\(\Rightarrow\)Tam giác AED vuông cân ( đpcm )

a: góc BAC=góc BCA

=>sđ cung BC=sđ cung BA

b: xy//DE
=>góc AED=góc yAE=góc ABC

c: góc AED=góc ABC

=>góc ABC+góc DEC=180 độ

=>BCDE nội tiếp