K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)a.Tính BC,AH,BI,CIb.Chứng minh tam giác ABC và tam giác HAC đồng dạngc.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông câne.Phân giác của góc ACB cắt HN ở E, phân giác của góc...
Đọc tiếp

1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)

a.Tính BC,AH,BI,CI

b.Chứng minh tam giác ABC và tam giác HAC đồng dạng

c.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.

d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông cân

e.Phân giác của góc ACB cắt HN ở E, phân giác của góc ABC cắt HM ở F. Chứng minh EF song song với MN

f.Chứng minh:BF.EC=AF. AE

2 , 

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD , BE, CF cắt nhau tại H.

a)Chứng minh tam giác AEF đồng dạng với tam giác ABC.

b)Chứng minh tam giác AEF đồng dạng với tam giác DBF. 

3 . 

Cho tam giác ABC vuông tại A , AB=9cm; AC=12cm. đường cao AH, đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC), đường thẳng DE cắt đường thẳng AB tại F.

a.Tính BC, AH?

b.Chứng minh tam giác EBF đồng dạng với tam giác EDC

c.Gọi I là giao điểm của AH và BD.Chứng minh.AB.BI=BH.BD

d.Chứng minh BD vuông góc với CF

e.Tính tỉ số diện tích của 2 tam giác ABC và BCD 

giải phương trình : x^2 - 2x -3=-4

0
1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)a.Tính BC,AH,BI,CIb.Chứng minh tam giác ABC và tam giác HAC đồng dạngc.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông câne.Phân giác của góc ACB cắt HN ở E, phân giác của góc...
Đọc tiếp

1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)

a.Tính BC,AH,BI,CI

b.Chứng minh tam giác ABC và tam giác HAC đồng dạng

c.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.

d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông cân

e.Phân giác của góc ACB cắt HN ở E, phân giác của góc ABC cắt HM ở F. Chứng minh EF song song với MN

f.Chứng minh:BF.EC=AF. AE

2 , 

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD , BE, CF cắt nhau tại H.

a)Chứng minh tam giác AEF đồng dạng với tam giác ABC.

b)Chứng minh tam giác AEF đồng dạng với tam giác DBF. 

3 . 

Cho tam giác ABC vuông tại A , AB=9cm; AC=12cm. đường cao AH, đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC), đường thẳng DE cắt đường thẳng AB tại F.

a.Tính BC, AH?

b.Chứng minh tam giác EBF đồng dạng với tam giác EDC

c.Gọi I là giao điểm của AH và BD.Chứng minh.AB.BI=BH.BD

d.Chứng minh BD vuông góc với CF

e.Tính tỉ số diện tích của 2 tam giác ABC và BCD 

giải phương trình : x^2 - 2x -3=-4

0

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

HC=AC^2/BC=20^2/25=16cm

Xét ΔACB vuông tại A có sin ACB=AB/BC=3/5

=>góc ACB=37 độ

b: Xét ΔHAB có HI/HA=HK/HB

nên IK//AB

=>KI vuông góc AC

Xét ΔCAK có

KI,AH là đường cao

KI cắt AH tại I

=>I là trực tâm

c: Xét ΔKBA và ΔIAC có

góc KBA=góc IAC

AB/AC=KB/IA=HB/HA

=>ΔKBA đồng dạng với ΔIAC

Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

10 tháng 8 2018

em học lớp 7 nên không biết

23 tháng 9 2019

Ý cuối câu b.

Sử dụng công thức tính diện tích tam giác ABC. Ta có:

\(\frac{1}{2}AB.\sin\widehat{A}.AC=\frac{1}{2}AH.BC\)

=> \(AB.\sin\widehat{A}.AC=AH.BC\)

Ta đã tính được: \(AH=3\sqrt{3};AB=6;AC=2\sqrt{13};MN=\frac{18\sqrt{13}}{13};BC=8\) ( để tính MN sử dụng tam giác đồng dạng ở câu b ý 1 nha)

=> \(\sin\widehat{A}.AH=\frac{AH^2.BC}{AB.AC}=\frac{18\sqrt{13}}{13}=MN\)

23 tháng 9 2019

tính MN sử dụng cặp tỉ số đồng dạng đúng không ạ ?

7 tháng 4 2020

b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7

7 tháng 4 2020

a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC

=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)

b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm

c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm