K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017

mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày 

A B C 4 9

Ta có : BC = BH +HC = 4 + 9 = 13 (cm)

Theo hệ thức lượng trong tam giác vuông ta có:

- AC2 = BC * HC 

AC2 = 13 * 9 = 117 

AC = \(3\sqrt{13}\)(cm)

- AB2 =BH * BC 

AB2 = 13 * 4 = 52 

AB = \(2\sqrt{13}\)(CM)

25 tháng 10 2017

trong sbt có giải ý. dựa vào mà lm

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

18 tháng 11 2023

a: Nửa chu vi tam giác ABC là:

\(\dfrac{2+3+4}{2}=4,5\left(cm\right)\)

Diện tích tam giác ABC là:

\(S_{ABC}=\sqrt{4,5\left(4,5-2\right)\left(4,5-3\right)\left(4,5-4\right)}\)

\(=\sqrt{4,5\cdot2,5\cdot1,5\cdot0,5}=\dfrac{3\sqrt{15}}{4}\)(cm2)

=>\(\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{3\sqrt{15}}{4}\)

=>\(2\cdot AH=\dfrac{3\sqrt{15}}{4}\)

=>\(AH=\dfrac{3\sqrt{15}}{8}\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HB^2+\dfrac{135}{64}=4\)

=>\(HB^2=\dfrac{121}{64}\)

=>HB=11/8(cm)

HB+HC=BC

=>HC+11/8=4

=>HC=4-11/8=21/8(cm)

b: Gọi BK,CE lần lượt là các đường cao ứng với các cạnh AC,AB

 

Vì BK\(\perp\)AC và CE\(\perp\)AB

nên \(S_{ABC}=\dfrac{1}{2}\cdot BK\cdot AC=\dfrac{1}{2}\cdot CE\cdot AB\)

=>\(\left\{{}\begin{matrix}BK\cdot\dfrac{3}{2}=\dfrac{3\sqrt{15}}{4}\\CE\cdot1=\dfrac{3\sqrt{15}}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BK=\dfrac{\sqrt{15}}{2}\left(cm\right)\\CE=\dfrac{3\sqrt{15}}{4}\left(cm\right)\end{matrix}\right.\)

c: Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{4+9-16}{2\cdot2\cdot3}=\dfrac{-1}{4}\)

=>\(\widehat{BAC}\simeq104^029'\)

Xét ΔABH vuông tại H có \(sinB=\dfrac{AH}{AB}=\dfrac{3\sqrt{15}}{16}\)

=>\(\widehat{B}\simeq46^034'\)

Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

=>\(\widehat{ACB}+104^029'+46^034'=180^0\)

=>\(\widehat{ACB}=28^057'\)

Câu 1: 

a: AH=3x4:5=2,4(cm)

b: HC=16:5=3,2(cm)

Xét ΔAHC vuông tại H có 

\(\sin HAC=\dfrac{HC}{AC}=\dfrac{3.2}{4}=\dfrac{4}{5}\)

nên \(\widehat{HAC}=53^0\)

10 tháng 7 2021

A B C 30o 9 H 18 D

a, ^B = ^A - ^C = 900 - 300 = 600 

\(\cos B=\frac{AB}{AC}\Rightarrow\frac{1}{2}=\frac{9}{AC}\Rightarrow AC=18\)cm 

Áp dụng định lí Pytago tam giác ABC vuông tại A 

\(BC^2=AB^2+AC^2=81+324=405\Rightarrow BC=9\sqrt{5}\)cm 

b, \(\cos B=\frac{BH}{AB}\Rightarrow\frac{1}{2}=\frac{BH}{9}\Rightarrow BH=\frac{9}{2}\)cm 

\(\sin B=\frac{AH}{AB}\Rightarrow\frac{\sqrt{3}}{2}=\frac{AH}{9}\Rightarrow AH=\frac{9\sqrt{3}}{2}\)cm 

c, Vì AD là đường phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{DC+BD}{AC+AB}=\frac{9\sqrt{5}}{27}=\frac{\sqrt{5}}{3}\)

\(\Rightarrow BD=\frac{\sqrt{5}}{3}AB=\frac{\sqrt{5}}{3}.9=3\sqrt{5}\)cm 

\(\Rightarrow HD=BD-BH=3\sqrt{5}-\frac{9}{2}\)cm 

Áp dụng định lí tam giác AHD vuông tại H ta có : 

\(AD^2=AH^2+HD^2=\left(\frac{9\sqrt{3}}{2}\right)^2+\left(3\sqrt{5}-\frac{9}{2}\right)^2\)

tự giải nhé >< 

a. Giải tam giác ABC
B=60^0
AC=AB/tan30=9.√ 3
BC=AB/sin30=9.2 =18
S=AC.AB/2=81√ 3/2
b. Kẻ AH là đường cao, tính AH, BH
AH=2S/BC=81√ 3/18=9√ 3/2
BH=√ (AB^2-AH^2)=9√ (1-3/4)=9/2

AH
Akai Haruma
Giáo viên
21 tháng 7 2021

Lời giải:

Gọi $H$ là chân đường cao kẻ từ $A$. Vì $ABC$ cân tại $A$ nên $H$ là trung điểm $BC$

Ta có:

\(S_{ABC}=\frac{AH.BC}{2}=\frac{h_C.AB}{2}\)

\(\Rightarrow BC=\frac{h_C.AB}{AH}=\frac{12AB}{15,6}=\frac{10}{13}AB\)

\(\Rightarrow BH=\frac{5}{13}AB\)

Áp dụng định lý Pitago:

$AH^2=AB^2-BH^2=AB^2-(\frac{5}{13}AB)^2$

$\Leftrightarrow 15,6^2=\frac{144}{169}AB^2$

$\Rightarrow AB=16,9$

$\Rightarrow BC=\frac{10}{13}AB=13$ (cm)

 

AH
Akai Haruma
Giáo viên
4 tháng 2 2021

Hình vẽ:undefined

9 tháng 9 2016

Bài 1:

3 4 x y z

Áp dụng đl pytago ta có:

\(\left(y+z\right)^2=3^2+4^2=9+16=25\)

=> y + z = 5

Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:

\(3^2=y\left(y+z\right)=5y\)

=>\(y=\frac{3^2}{5}=1,8\)

Có: y + z =5

=>z=5-y=5-1,8=3,2

Áp dụng hên thức liên quan tới đường cao:

\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)

=>\(x=\frac{12}{5}\)

2 tháng 9 2019

Bài 2:

B A C H 1cm 2cm x y

Ta có: △ABC vuông tại A và có đg cao AH

AB2 = BH.BC ( hệ thức lượng )

⇒ x2 = 1 . 3

⇒ x = \(\sqrt{1.3}=\sqrt{3}cm\)

AC2 = CH.BC

⇒ y2 = 2 . 3

⇒ y = \(\sqrt{6}\) cm