Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, Xét tam giác ABC cân tại A có AH là đường phân giác
nên AH đồng thời là đường cao, là đường trung tuyến
=> AH vuông BC
d, Vì AH là trung tuyến => BH = BC/2 = 4 cm
Theo định lí Pytago tam giác ABH vuông tại H
\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2}=3cm\)
e, Xét tam giác ADH và tam giác AEH có :
^ADH = ^AEH = 900
AH _ chung
DAH = ^EAH ( AH là đường phân giác )
Vậy tam giác ADH = tam giác AEH ( ch - gn )
=> HD = HE
Xét tam giác HDE có HD = HE
Vậy tam giác HDE cân tại H
AB bằng 4 rồi mà bạn có sửa lại đề bài thì chat cho mình mình giải cho nhé chúc bạn may mắn trên con đường học tập của mình
Ồh Mình nhầm bạn giải giúp mình vài bài này nha bài 1 .Cho tam giác ABC Kẻ AH vuông góc với BC tại H sao cho H nằm giữa B và C biết AC = 5 cm AH = 4 cm và BC = 9 cm Tính độ dài của BD
bài 2 .Cho tam giác ABC cân tại A có góc a bằng 30 độ BC = 2 cm trên cạnh ac lấy điểm D sao cho góc cbd = 60° tính độ dài của AD
bài 3. Cho tam giác ABC vuông tại A có AB chia AC bằng 3/4 và BC = 15 cm Tính độ dài của AB AC
Giải nhah hộ mik vs ạk
Hnay có nhiều tamgiac vuông ghê :)), ko vẽ nổi đg cao tại vì tớ ko bt vẽ trên này.
a, Bỏ qua đi >:
b, Xét \(\Delta\)AHB và \(\Delta\)AHC ta có
^AHB = ^AHC = 90^0
AH_chung
AB = AC (gt)
=> \(\Delta\)AHB = \(\Delta\)AHC (ch-cgn)
b, Xét \(\Delta\)ABH có ^H = 90^0
AB = 10cm ; \(BH=\frac{BC}{2}=\frac{12}{2}=6\)cm
Aps dụng đinh lí Py ta go ta có :
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2\Leftrightarrow AH^2=100-36=84\Leftrightarrow AH=8\)cm
c, Vì \(\Delta\)ABC cân tại A
=> AH là đường cao đồng thời là đường trung truyến
Mà G là trọng tâm của \(\Delta\)ABC
=> G \(\in\)AH
Hay 3 điểm A;G;H thẳng hàng
sh-cgn )): cho xin lỗi ... ẩu quá
Sửa thành : ch-cgv bn nhé !
GT | Cho △ABC vuông tại A có AB = 9cm; BC = 15 cm |
KL | a) Tính AC b) H ∈ BC sao cho BA = BH; HI _|_ BC (I ∈ AC). CM : △ABI = △HBI c) HI ∩ BA = {F} . CM : IF = IC d) CM : IF > HI |
a) Áp dụng định lí Pythagoras vào △ABC, ta có :
BC2 = AB2 + AC2
\(\Rightarrow\)152 = 92 + AC2
\(\Rightarrow\)AC2 = 144
\(\Rightarrow\)AC = 12
Vậy độ dài cạnh AC là 12 cm
b) Xét △ABI và △HBI có :
IB chung
BA = BH (gt)
\(\Rightarrow\) △ABI = △HBI (cạnh huyền-góc nhọn)
[ĐPCM]
c) Ta có : △ABI = △HBI
\(\Rightarrow\)IA = IH (cặp cạnh tương ứng)
Xét △AIF và △HIC có :
IA = IH (Chứng minh trên)
^AIF = ^HIC (Đối đỉnh)
\(\Rightarrow\)△AIF = △HIC (Cạnh góc vuông-Góc nhọn kề)
\(\Rightarrow\)IF = IC (Cặp cạnh tương ứng)
[ĐPCM]
d) Xét △IBC có H ∈ BC
\(\Rightarrow\)IC > HI
\(\Rightarrow\)IF > HI (Vì IF = IC)
[ĐPCM]
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng) và \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
b) Ta có: HB=HC(cmt)
mà HB+HC=BC(H nằm giữa B và C)
nên \(HB=HC=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=5^2-4^2=9\)
hay AH=3(cm)