Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hnay có nhiều tamgiac vuông ghê :)), ko vẽ nổi đg cao tại vì tớ ko bt vẽ trên này.
A B C P/S : t/c minh họa H G
a, Bỏ qua đi >:
b, Xét \(\Delta\)AHB và \(\Delta\)AHC ta có
^AHB = ^AHC = 90^0
AH_chung
AB = AC (gt)
=> \(\Delta\)AHB = \(\Delta\)AHC (ch-cgn)
b, Xét \(\Delta\)ABH có ^H = 90^0
AB = 10cm ; \(BH=\frac{BC}{2}=\frac{12}{2}=6\)cm
Aps dụng đinh lí Py ta go ta có :
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2\Leftrightarrow AH^2=100-36=84\Leftrightarrow AH=8\)cm
c, Vì \(\Delta\)ABC cân tại A
=> AH là đường cao đồng thời là đường trung truyến
Mà G là trọng tâm của \(\Delta\)ABC
=> G \(\in\)AH
Hay 3 điểm A;G;H thẳng hàng
sh-cgn )): cho xin lỗi ... ẩu quá
Sửa thành : ch-cgv bn nhé !
c, Xét tam giác ABC cân tại A có AH là đường phân giác
nên AH đồng thời là đường cao, là đường trung tuyến
=> AH vuông BC
d, Vì AH là trung tuyến => BH = BC/2 = 4 cm
Theo định lí Pytago tam giác ABH vuông tại H
\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2}=3cm\)
e, Xét tam giác ADH và tam giác AEH có :
^ADH = ^AEH = 900
AH _ chung
DAH = ^EAH ( AH là đường phân giác )
Vậy tam giác ADH = tam giác AEH ( ch - gn )
=> HD = HE
Xét tam giác HDE có HD = HE
Vậy tam giác HDE cân tại H
Bài 1:
A C B
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
A B C D
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng) và \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
b) Ta có: HB=HC(cmt)
mà HB+HC=BC(H nằm giữa B và C)
nên \(HB=HC=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=5^2-4^2=9\)
hay AH=3(cm)