K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

Bạn vẽ hình nha

Xét tam giác AHB vuông tại h

\(BH=\sqrt{BA^2-AH^2}\)(Py ta go)

\(\Rightarrow BH=\sqrt{10^2-8^2}=6\)

Xét tam giác AHC vuông tại H 

\(CH=\sqrt{AC^2-AH^2}\)

\(\Rightarrow CH=15\)

\(\Rightarrow BC=21\Rightarrow BC^2=441\)

Xét \(AB^2+AC^2=10^2+17^2=389\)

\(\Rightarrow BC^2\ne AB^2+AC^2\)

Vậy tam giác ABC không là tam giác vuông

5 tháng 4 2020

\(\text{a) Có }\Delta ABC\text{cân tại A}\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\text{Xét }\Delta AHB\text{ và }\Delta AHC\text{ có:}\)

\(\widehat{AHB}=\widehat{AHC}=90^o\)

\(AB=AC=10cm\)\(\Rightarrow\)\( \Delta AHB\text{=}\Delta AHC\left(ch-gn\right)\)

\(\widehat{ABC}=\widehat{ACB}\)

\(\text{b) Có }\Delta AHB=\Delta AHC\Rightarrow HB=HC=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)

\(\text{ Xét }\Delta AHB\text{vuông tại H có:}\)

\(AH^2+BH^2=AB^2\) (Định lý py-ta-go)

\(AH^2=AB^2-BH^2=10^2-6^2=100-36=64\)

\(AH=\sqrt{64}=8\left(cm\right)\)

\(\text{c) Xét }\Delta BHM\text{ và }\Delta CHN\text{ có:}\)

\(\widehat{BMH}=\widehat{CNH}=90^o\)

\(HB=HC\text{ (CMT)}\)\(\Rightarrow\)\(\text{ }\Delta BHM\text{ = }\Delta CHN \left(CH-GN\right)\)

\(\widehat{ABC}=\widehat{ACB}\)

\(\text{d) }\)\(\text{Ta có: }MH\perp AB,OB\perp AB\Rightarrow MH//OB\)

\(\Rightarrow\widehat{MHB}=\widehat{CBO}\text{ (2 góc so le trong)}\)

\(\text{Ta có: }NH\perp AC,OC\perp AC\Rightarrow NH//OC\)

\(\Rightarrow\widehat{NHC}=\widehat{BCO}\text{ (2 góc so le trong)}\)

\(\text{ }\text{Mà }\Delta BHM\text{ = }\Delta CHN\Rightarrow\widehat{MHB}=\widehat{NHC}\)

\(\text{Hay}\widehat{CBO}=\widehat{BCO}\)\(\Rightarrow\Delta OBC\text{ cân tại O}\)

22 tháng 2 2020

A B C H M N

a) Vì AB = AC =10cm => (đpcm)

b) Xét \(\Delta AHB\)và \(\Delta AHC\)có;

AB = AC(gt)

\(\widehat{AHB}=\widehat{AHC}=90^o\)   

AH chung

\(\Rightarrow\Delta AHB=\Delta AHC\left(c.g.c\right)\)

\(\Rightarrow HB=HC\)(2 cạnh tương ứng)(1)

\(\Rightarrow\widehat{B}=\widehat{C}\)(2 góc tương ứng)(2)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\Rightarrow\)AH là tia phân giác của \(\widehat{A}\)

c) HM với HN?

Vì \(\Delta HMB;\Delta HNC\)là tam giác vuông nên từ  (1);(2) =>\(\Delta HMB=\Delta HNC\)

e)Xét \(\Delta AHC\)vuông: 

Áp dụng định lí Py ta go ta có:

   \(AC^2=CH^2+AH^2\)

\(12^2=6^2+AH^2\)

\(\Rightarrow AH^2=12^2-6^2=144-36=108\)

\(\Rightarrow AH=\sqrt{108}cm\)

23 tháng 2 2020

Thông cảm nhé tối qua mình tắt mất nên nay làm tiếp:D

A B C M N O x y H

Vì \(\widehat{ABO}=\widehat{ACO}=90^o\)mà \(\widehat{ABC}=\widehat{ACB}=60^o\Rightarrow\widehat{BCO}=\widehat{CBO}=30^o\)

Do \(\widehat{BCO}=\widehat{CBO}=30^o\)nên \(\Delta OBC\)là tam giác cân

1: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH

hay H là trung điểm của BC

2: BH=CH=BC/2=6cm

=>AH=8cm

3: Xét ΔAHE có 

AK là đường cao

AK là đường trung tuyến

Do đó:ΔAHE cân tại A

hay AH=AE(1)

4: Xét ΔADH có

AI là đường cao

AI là đường trung tuyến

Do đó:ΔADH cân tại A

=>AD=AH(2)

Từ (1) và (2)suy ra AD=AE
hay ΔADE cân tại A

a) Xét ΔABC có 

BA<BC(gt)

mà góc đối diện với cạnh BA là \(\widehat{ACB}\)

và góc đối diện với cạnh BC là \(\widehat{BAC}\)

nên \(\widehat{BAC}>\widehat{ACB}\)(Quan hệ giữa cạnh và góc đối diện trong tam giác)

b) Xét ΔABH vuông tại H và ΔAMH vuông tại H có

HB=HM(gt)

AH chung

Do đó: ΔABH=ΔAMH(hai cạnh góc vuông)

Suy ra: BA=MA(hai cạnh tương ứng)

Xét ΔBAM có BA=MA(cmt)

nên ΔBAM cân tại A(Định nghĩa tam giác cân)

Xét ΔBAM cân tại A có \(\widehat{B}=60^0\)(gt)

nên ΔBAM đều(Dấu hiệu nhận biết tam giác đều)

10 tháng 7 2021

 

Áp dụng định lý Pi-ta-go vào tam giác vuông ABH vuông tại H ta có: 

    AB2= BH2 + AH2  

<=> 152= 122+ AH2

<=> AH2= 152- 122= 225- 144= 81

<=> AH= 9 (cm)

 Tương tự ta có : Áp dụng định lý Pi-ta-go vào tam giác vuông ACH vuông tại H .             

        AC2= AH2+ HC2

<=> 412= 92+ HC2

<=> HC2= 412- 92= 1681- 81= 1600

<=>HC= 40 (cm)

 

 

 

 

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC

b: BH=CH=12/2=6cm

AH=căn 10^2-6^2=8cm

 

a: ΔABC cân tại A có AH là phân giác

nên H là trung điểm của BC

ΔABC cân tại A có AH là trung tuyến

nên AH vuông góc BC

b: BH=CH=12/2=6cm

AH=căn AB^2-AH^2=8cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>AD=AE và HD=HE

=>ΔHDE cân tại H

d: Xét ΔABC có AD/AB=AE/AC

nên DE//BC