Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
refer
Diện tích AMN giảm số lần so với ABC là:
3×2=6 (lần)
Diện tích AMN là:
36 : 6 = 6 (cm2)
M là điểm chính giữa của cạnh AC
=>M là trung điểm của AC
N là điểm chính giữa của cạnh AB
=>N là trung điểm của AB
P là điểm chính giữa của cạnh BC
=>P là trung điểm của BC
Xét ΔAMN và ΔACB có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\left(=\dfrac{1}{2}\right)\)
\(\widehat{A}\) chung
Do đó: ΔAMN đồng dạng với ΔACB
=>\(\dfrac{S_{AMN}}{S_{ACB}}=\left(\dfrac{AM}{AC}\right)^2=\dfrac{1}{4}\)
=>\(S_{AMN}=\dfrac{1}{4}\cdot120=30\left(cm^2\right)\)
Xét ΔBNP và ΔBAC có
\(\dfrac{BN}{BA}=\dfrac{BP}{BC}\left(=\dfrac{1}{2}\right)\)
\(\widehat{B}\) chung
Do đó: ΔBNP~ΔBAC
=>\(\dfrac{S_{BNP}}{S_{BAC}}=\left(\dfrac{BN}{BA}\right)^2=\dfrac{1}{4}\)
=>\(S_{BNP}=\dfrac{1}{4}\cdot120=30\left(cm^2\right)\)
Xét ΔCPM và ΔCBA có
\(\dfrac{CP}{CB}=\dfrac{CM}{CA}\left(=\dfrac{1}{2}\right)\)
\(\widehat{C}\) chung
Do đó: ΔCPM~ΔCBA
=>\(\dfrac{S_{CPM}}{S_{CBA}}=\left(\dfrac{CP}{CB}\right)^2=\dfrac{1}{4}\)
=>\(S_{CPM}=\dfrac{1}{4}\cdot120=30\left(cm^2\right)\)
Ta có: \(S_{ANM}+S_{BNP}+S_{NMP}+S_{MPC}=S_{ABC}\)
=>\(S_{MPN}+30+30+30=120\)
=>\(S_{MPN}=30\left(cm^2\right)\)
9cm2