Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : AB = AC
=> △ ABC cân tại A
Xét △ ABC cân tại A có :
AD là đường trung tuyến
=> AD là đường phân giác
Xét △ ADE vuông tại E và △ ADF vuông tại F có :
AD là cạnh chung
DAEˆ=DAFˆDAE^=DAF^ ( AD là đường phân giác )
Vậy △ ADE = △ ADF (ch-gn)
=> AE = AF ( hai cạnh tương ứng )
=> A nằm trên đường trung trực của EF (1)
Lại có : DE = DF ( △ ADE = △ ADF )
=> D nằm trên đường trung trực của EF (2)
Từ (1), (2) => AD là đường trung trực của EF
Mấy câu sau bạn tự làm nhé
a, D;E Lần lượt là trung điểm của AB và AC (gt)
=> DE là đtb của tam giác ABC (Đn)
=> DE = 1/2BC => 2DE = BC (đl)
DE = EI => DI = 2DE
=> DI = BC
b,
a: Xét tứ giác ADCF có
E là trung điểm của AC
E là trung điểm của DF
Do đó: ADCF là hình bình hành
Suy ra: CF//AD và CF=AD
hay CF//AB và CF=BD
b: Xét ΔBCD và ΔFDC có
BC=FD
BD=FC
CD chung
Do đó: ΔBCD=ΔFDC
c: Xét ΔACB có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔACB
Suy ra: DE//BC
Bài giải
a) Xét \(\Delta AEF\) và \(\Delta CED\) có :
AE = CE ( E là trung điểm AC )
\(\widehat{ AEF}\) = \(\widehat{CED}\) ( đối đỉnh)
EF = ED ( gt )
\(\Rightarrow\)\(\Delta AEF =\Delta CED\) ( c.g.c)
\(\Rightarrow\text{ }AF=DC\) ( 2 cạnh tương ứng )
b)
Xét \(\Delta AED\) và \(\Delta CEF\) có:
AE = EC (gt)
AED = CEF ( đối đỉnh)
ED = EF (gt)
Do đó, \(\Delta AED\) = \(\Delta CEF\) (c.g.c)
=> AD = CF (2 cạnh tương ứng)
ADE = CFE (2 góc tương ứng)
Mà ADE và CFE là 2 góc so le trong
nên CF // AD hay CF // AB hay CF//DB
Nối đoạn CD
Xét \(\Delta BDC\) và \(\Delta FCD\) có:
BD = FC ( cùng = AD)
BDC = FCD (so le trong)
CD là cạnh chung
Do đó, \(\Delta BDC\) = \(\Delta FCD\) (c.g.c)
=> BC = FD ( 2 cạnh tương ứng )
Mà \(DE=EF=\frac{1}{2}FD\)
=>DE=1/2 BC ( đpcm)
Lại có : \(\Delta BDC=\Delta FCD\)( cmt)
=> BCD = FDC (2 góc tương ứng)
Mà BCD và FDC là 2 góc so le trong nên DF // BC hay DE // BC ( E thuộc DF) ( đpcm)
a) Xét t/g AEF và t/g CED có :
AE=CE ( E là trung điểm AC)
góc AEF = góc CED ( đối đỉnh)
EF=ED( gt)
=> t/g AEF = t/g CED ( c.g.c)
=> AF=DC ( 2 cạnh tương ứng )
b)
Xét t/g AED và t/g CEF có:
AE = EC (gt)
AED = CEF ( đối đỉnh)
ED = EF (gt)
Do đó, t/g AED = t/g CEF (c.g.c)
=> AD = CF (2 cạnh tương ứng)
ADE = CFE (2 góc tương ứng)
Mà ADE và CFE là 2 góc so le trong
nên CF // AD hay CF // AB hay CF//DB
Nối đoạn CD
Xét t/g BDC và t/g FCD có:
BD = FC ( cùng = AD)
BDC = FCD (so le trong)
CD là cạnh chung
Do đó, t/g BDC = t/g FCD (c.g.c)
=> BC = FD ( 2 cạnh tương ứng )
Mà DE=EF=1/2 FD
=>DE=1/2 BC ( đpcm)
Lại có : t/g BDC =t/g FCD ( cmt)
=> BCD = FDC (2 góc tương ứng)
Mà BCD và FDC là 2 góc so le trong
nên DF // BC
hay DE // BC ( E thuộc DF)( đpcm)
a: Xét tứ giác ABCP có
F là trung điểm chung của AC và BP
nen ABCP là hình bình hành
Suy ra: AP//BC và AP=BC
Xét tứ giác AQBC có
E là trug điểm chung của AB và QC
nên AQBC là hình bình hành
Suy ra: AQ//BC và AQ=BC
=>AP=AQ
b: Ta có: AQ//BC
AP//BC
DO đó: P,A,Q thẳng hàng
c: Ta có: AQBC là hình bình hành
nên BQ//AC
Ta có: ABCP là hình bình hành
nên CP//AB
AD nhanh hộ mình cái Giải chi tiết ra nhá <3
anh tự kẻ hình :
a, xét tam giác FDB và tam giác EDA có : FD = DE (gt)
AD = DB do D là trung điểm của AB (gt)
góc FDB = góc ADE (đối đỉnh)
=> tam giác FDB = tam giác EDA (c - g - c)
=> BF = AE (đn)
b, tam giác FDB = tam giác EDA (câu a)
=> góc EAD = góc DBF (đn) 2 góc này so le trong
=> AC // FB (tc)