K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

What!!!!!!!!!!!!! Bà cx hỏi câu này ah ?!!! Tui đang nghĩ kéo dài AH thành đg cao AD, rồi CM AD là đg trung trực xong rùi tíh sau đc ko

17 tháng 7 2017

Lúc trv hỏi thui. H làm đc r. Uk kéo dài AH

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Lời giải:

a)

Tính chất: Trong tam giác $ABC$ vuông tại $A$ bất kỳ, đường trung tuyến $AM$ ứng với cạnh huyền thì bằng một nửa cạnh huyền.

Chứng minh:

Trên tia đối của tia $MA$ lấy $N$ sao cho $MA=MN$

Ta dễ dàng chứng minh được \(BACN\) là hình bình hành có 1 góc vuông nên là hình chữ nhật. Khi đó: \(MA=\frac{1}{2}NA=\frac{1}{2}BC\) (đpcm)

-------------------------

Áp dụng vào bài toán:

Xét tam giác vuông $AFH$ có $FI$ là đường trung tuyến ứng với cạnh huyền nên \(FI=\frac{1}{2}AH=IH\)

\(\Rightarrow \triangle IFH\) cân tại $I$

\(\Rightarrow \widehat{IFH}=\widehat{IHF}=90^0-\widehat{BAH}\)

Tương tự, trong tam giác vuông $BFC$: \(FK=KC\Rightarrow \) tam giác $KFC$ cân tại $K$

\(\Rightarrow \widehat{KFH}=\widehat{KCF}\)

Do đó:
\(\widehat{IFK}=\widehat{IFH}+\widehat{KFH}=90^0-\widehat{BAH}+\widehat{KCF}\)

\(\widehat{BAH}=\widehat{KCF}\) (cùng bằng \(90^0-\widehat{BAC}\))

Suy ra: \(\widehat{IFK}=90^0\Rightarrow FK\perp FI\) (đpcm)

b)

\(FI=\frac{1}{2}AH=3\)

\(FK=\frac{1}{2}BC=4\)

Áp dụng định lý Pitago cho tam giác vuông $FIK$

\(IK=\sqrt{FI^2+FK^2}=\sqrt{3^2+4^2}=5\) (cm)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Hình vẽ:

Mở đầu về phương trình