Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAIB và ΔAIC có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
Do đó: ΔAIB=ΔAIC
b: ΔAIB=ΔAIC
=>IB=IC và \(\widehat{AIB}=\widehat{AIC}\)
mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)
nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)
=>AI\(\perp\)BC
b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
\(\widehat{HAI}=\widehat{KAI}\)
Do đó: ΔAHI=ΔAKI
=>IH=IK
c: Xét ΔHIN vuông tại H và ΔKIM vuông tại K có
IH=IK
\(\widehat{HIN}=\widehat{KIM}\)
Do đó: ΔHIN=ΔKIM
=>IN=IM và HN=KM
ΔAHI=ΔAKI
=>AH=AK
AH+HN=AN
AK+KM=AM
mà AH=AK và HN=KM
nên AN=AM
=>A nằm trên đường trung trực của NM(1)
IN=IM(cmt)
nên I nằm trên đường trung trực của MN(2)
PN=PM
=>P nằm trên đường trung trực của MN(3)
Từ (1),(2),(3) suy ra A,I,P thẳng hàng
a) Xét tg ABI và ACI có :
AB=AC( ABC cân tại A)
AI-chung
\(\widehat{AIB}=\widehat{AIC}=90^o\)
=> Tg ABI=AIC (ch-gn)
=> IB=IC
b) Có : \(IB=IC=\frac{BC}{2}=\frac{12}{2}=6cm\)
Xét tg ABI vuông tại I có :
AB2=AI2+IB2
=>102=AI2+62
=>AI=8cm
c) Có :\(\widehat{ABC}+\widehat{HIB}=90^o\)
\(\widehat{ACB}+\widehat{KIC}=90^o\)
\(\widehat{ABC}=\widehat{ACB}\)(ABC cân A)
\(\Rightarrow\widehat{HIB}=\widehat{KIC}\)
Lại có :\(\widehat{IHB}=\widehat{IKC}=90^o\)
IB=IC(cmt)
=> Tg IHB=IKC(ch-gn)
d) Có : MN//BC
\(\Rightarrow\widehat{MIB}=\widehat{IMN}\left(SLT\right)\)
và \(\widehat{KIC}=\widehat{INM}\left(SLT\right)\)
Mà :\(\widehat{HIB}=\widehat{KIC}\left(cmt\right)\)
\(\Rightarrow\widehat{IMN}=\widehat{INM}\)
=> Tg IMN cân tại I
Ý còn lại tự CM
#H
Trả lời:
P/s: Xin lỗi nha!~Chỉ đc mỗi câu a!!!~
a) Theo giả thiết ta có :
AH là đường trung tuyến ⇒BH=HC⇒BH=HC
xét ΔAHBΔAHB và ΔAHCΔAHC có:
AB=ACAB=AC (gt)
AHAH chung
BH=HCBH=HC ( cmt)
⇒ΔAHB=ΔAHC⇒ΔAHB=ΔAHC (c.c.c)
⇒AHBˆ=AHCˆ⇒AHB^=AHC^ (2 góc tương ứng )
~Học tốt!~
b , Ta có : HB +HC= Bc
mà : HB=HC (GT)
=> HB=HC=\(\frac{BC}{2}\)=\(\frac{4}{2}\)= 2
Ta có : \(\Delta ABH\)vuông tại H
=> \(AB^2\)= \(BH^2\)+ \(AH^2\)( Định lí Py-ta-go)
=> 62 = 22 + AH2
=> AH2 = 62 - 22
=> AH2 = 32
=> AH \(\approx\) 5,7 cm