Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bạn đánh sai: sau khi vẽ hình tôi thấy đề đúng phải là: Đường tròn nội tiếp tâm O tiếp xúc với BC ở D, CA ở E và AB ở F.
Lời giải bài toán như sau: Kí hiệu độ dài ba cạnh BC,CA,AB tương ứng là \(a,b,c.\) Khi đó ta có \(AE=AF=p-a,BD=BF=p-b,CD=CE=p-c\) với \(p=\frac{a+b+c}{2}\) là nửa chu vi tam giác \(\Delta ABC.\)
Khi đó ta thấy \(FM=p-b\)\(
a, Học sinh tự chứng minh
b, Học sinh tự chứng minh
c, Học sinh tự chứng minh
d, Chú ý: B I A ^ = B M A ^ , B M C ^ = B K C ^
=> Tứ giác BICK nội tiếp đường tròn (T), mà (T) cũng là đường tròn ngoại tiếp DBIK. Trong (T), dây BC không đổi mà đường kính của (T) ≥ BC nên đường kính nhỏ nhất bằng BC
Dấu "=" xảy ra <=> B I C ^ = 90 0 => I ≡ A => MA