K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 11 2018

Lời giải:
\(\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}=\frac{ca}{b+c}+\frac{ab}{c+a}+\frac{bc}{a+b}\)

\(\Leftrightarrow \frac{a(b-c)}{b+c}+\frac{b(c-a)}{c+a}+\frac{c(a-b)}{a+b}=0\)

\(\Leftrightarrow \frac{a(b-c)}{b+c}-\frac{b(b-c+a-b)}{c+a}+\frac{c(a-b)}{a+b}=0\)

\(\Leftrightarrow \frac{a(b-c)}{b+c}-\frac{b(b-c)}{c+a}-\frac{b(a-b)}{c+a}+\frac{c(a-b)}{a+b}=0\)

\(\Leftrightarrow (b-c)\left(\frac{a}{b+c}-\frac{b}{c+a}\right)-(a-b)\left(\frac{b}{c+a}-\frac{c}{a+b}\right)=0\)

\(\Leftrightarrow (b-c).\frac{(a-b)(a+b+c)}{(b+c)(c+a)}-(a-b).\frac{(b-c)(b+c+a)}{(c+a)(a+b)}=0\)

\(\Leftrightarrow (a+b+c)(a-b)(b-c)\left(\frac{1}{(b+c)(c+a)}-\frac{1}{(c+a)(a+b)}\right)=0\)

\(\Leftrightarrow (a+b+c)(a-b)(b-c).\frac{a-c}{(a+b)(b+c)(c+a)}=0\)

Vì $a,b,c$ là 3 cạnh tam giác nên \(\frac{a+b+c}{(a+b)(b+c)(c+a)}\neq 0\)

Do đó: \((a-b)(b-c)(a-c)=0\Rightarrow \left[\begin{matrix} a=b\\ b=c\\ c=a\end{matrix}\right.\)

Suy ra tam giác $ABC$ cân

Ta có đpcm.

7 tháng 6 2021

a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)

b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)

Tương tự \(\Rightarrow CH=BC.sin^2B\)

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Lời giải:
\(a+b+c+\frac{9abc}{ab+bc+ac}\geq 4\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right)\)

\(\Leftrightarrow (a+b+c)(ab+bc+ac)+9abc\geq 4(ab+bc+ac)\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right)\)

\(\Leftrightarrow (a+b+c)(ab+bc+ac)+9abc\geq \frac{4a^2b^2}{a+b}+4abc+\frac{4b^2c^2}{b+c}+4abc+\frac{4a^2c^2}{a+c}+4abc\)

\(\Leftrightarrow ab(a+b)+bc(b+c)+ca(c+a)\geq \frac{4a^2b^2}{a+b}+\frac{4b^2c^2}{b+c}+\frac{4a^2c^2}{a+c}(*)\)

Áp dụng BĐT AM-GM:

\(4ab\leq (a+b)^2\Rightarrow \frac{4a^2b^2}{a+b}\leq \frac{ab(a+b)^2}{a+b}=ab(a+b)\)

TT: \(\frac{4b^2c^2}{b+c}\leq bc(b+c); \frac{4c^2a^2}{c+a}\leq ac(a+c)\)

Cộng các BĐT trên ta thu được BĐT $(*)$. Tức là $(*)$ luôn đúng, kéo theo BĐT ban đầu luôn đúng

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

16 tháng 8 2021

Hình tự vẽ nha

Kẻ phân giác \(AD,BK\perp AD\)
\(\sin\dfrac{A}{2}=\sin BAD\)
xét \(\Delta AKB\) vuông tại K,có: 
\(\sin BAD=\dfrac{BK}{AB}\left(1\right)\)
Xét \(\Delta BKD\) vuông tại K,có :
\(BK\le BD\) thay vào (1): 
\(\sin BAD\le\dfrac{BD}{AB}\left(2\right)\) 
lại có:\(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{BD}{BD+CD}=\dfrac{AB}{AB+AC}\)
\(\Rightarrow\dfrac{BD}{BC}=\dfrac{AB}{AB+AC}\)
\(\Rightarrow BD=\dfrac{AB\cdot AC}{AB+AC}\) thay vào (2) 
\(\sin BAD\le\dfrac{\dfrac{AB\cdot AC}{AB+AC}}{AB}=\dfrac{BC}{AB+AC}\)
\(\RightarrowĐPCM\)

Tick plz

30 tháng 10 2023

Ta có:

\(AB^2=BC\cdot BH=c^2=a\cdot c'\)

\(\Rightarrow c\cdot c=a\cdot c'\Rightarrow\dfrac{a}{c}=\dfrac{c}{c'}\)

Vậy đáp án đúng là D 

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

a.

Áp dụng hệ thức lượt trong tam giác vuông ta có:

$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$

$\Leftrightarrow \frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{3a^2}$

$\Rightarrow AC=\sqrt{3}a$

$BC=\sqrt{AB^2+AC^2}=\sqrt{a^2+3a^2}=2a$

b.

$HB=\frac{BC}{4}$ thì $HC=\frac{3}{4}BC$

$\Rightarrow \frac{HB}{HC}=\frac{1}{3}$

Áp dụng hệ thức lượt trong tam giác vuông:

$AB^2=BH.BC; AC^2=CH.BC$

$\Rightarrow \frac{AB}{AC}=\sqrt{\frac{BH}{CH}}=\frac{\sqrt{3}}{3}$

Áp dụng định lý Pitago:

$4a^2=BC^2=AB^2+AC^2=(\frac{\sqrt{3}}{3}.AC)^2+AC^2$

$\Rightarrow AC=\sqrt{3}a$

$\Rightarrow AB=a$

 

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

c. 

Áp dụng hệ thức lượt trong tam giác vuông:

$AB^2=BH.BC$

$\Leftrightarrow AB^2=BH(BH+CH)$

$\Leftrightarrow a^2=BH(BH+\frac{3}{2}a)$

$\Leftrightarrow BH^2+\frac{3}{2}aBH-a^2=0$

$\Leftrightarrow (BH-\frac{a}{2})(BH+2a)=0$

$\Rightarrow BH=\frac{a}{2}$
$BC=BH+CH=2a$

$AC=\sqrt{BC^2-AB^2}=\sqrt{3}a$

d. Tương tự phần a.

23 tháng 6 2021

\(VT=\dfrac{a^3bc}{c+ab^2c}+\dfrac{ab^3c}{a+abc^2}+\dfrac{abc^3}{b+a^2bc}\)

\(=abc\left(\dfrac{a^2}{c+ab^2c}+\dfrac{b^2}{a+abc^2}+\dfrac{c^2}{b+a^2bc}\right)\)

Áp dụng bđt Cauchy-Schwarz dạng engel có:

\(VT\ge\dfrac{abc\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}\)\(=\dfrac{abc\left(a+b+c\right)}{1+abc}\)

Dấu "=" xảy ra khi \(a=b=c\)

Vậy...

23 tháng 6 2021

Sai đề không bạn,tại a=b=c=2 thay vào không thỏa mãn nha