K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2019

a, Cách 1. Sử dụng các tỉ số lượng giác trong tam giác vuông NAB và NAC chúng ta có BN.tanB = NC.tanC

Chú ý BN + NC = BC chúng ta tính được

BN ≈ 4,67cm => AN ≈ 3,65cm

Cách 2. Gợi ý: Kẻ CH vuông góc với AB tại H

b, Xét ∆ANC vuông có:  A C = A N sin C => AC ≈ 7,3cm

5 tháng 10 2019

kẻ bk vuông gó vs kc

tam giác ABC vuông k 

a: ΔANB vuông tại N

=>tan B=AN/NB

=>AN=NB*tan38

ΔANC vuông tại N

=>AN=NC*tan30

=>NB*tan38=NC*tan30

=>NB/NC=tan30/tan38\(\simeq0,74\)

=>NB=0,74NC

mà NB+NC=11

nên \(NB\simeq4,68\left(cm\right);NC\simeq6,32\left(cm\right)\)

AN=NC*tan30=6,32*tan30\(\simeq3,65\left(cm\right)\)

b: góc BAC=180-38-30=180-68=112 độ

Xét ΔABC có BC/sinA=AC/sinB

=>\(AC=\dfrac{11}{sin112}\cdot sin38\simeq7,3\left(cm\right)\)

7 tháng 11 2017

c)

  K ẻ   B N ⊥ A C N ∈ A C .   B A C ⏜ = 60 0 ⇒ A B N ⏜ = 30 0 ⇒ A N = A B 2 = c 2 ⇒ B N 2 = A B 2 − A N 2 = 3 c 2 4 ⇒ B C 2 = B N 2 + C N 2 = 3 c 2 4 + b − c 2 2 = b 2 + c 2 − b c ⇒ B C = b 2 + c 2 − b c

Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, R là bán kính đường tròn ngoại tiếp tam giác ABC. Xét tam giác đều BCE có  R = O E = 2 3 E M = 2 B C 3 3.2 = 1 3 . 3 b 2 + c 2 − b c

28 tháng 9 2018

kẻ BK vuongAC ^CBK vuong tai K và ^C = 30 độ  = > tam giácCBK nửa đều BK = BC/2 = 5,5 ^KBC = 180-(BKA+^C) = 60độ ^KBA = ^KBC-^ABC = 22 độ  = >tam giác KBA có KBA = 22 độ  = >AB = BK:sinKBA = 5,5:sin22 = 5,93194 AN = AB.sinABN = 3,65207 b) AC = 2AN = 7,30414

16 tháng 8 2020

38 38 o o A B C K N

Kẻ \(BK\perp AC\left(K\in AC\right)\)

Trong tam giác vuông BKC có:

 \(\widehat{KBC}=60^o-30^o=60^o\)

 \(\Rightarrow\widehat{KBA}=60^o-38^o=22^o\)

BC = 11 (cm) => BK = 5,5 (cm) ( tính chất cạnh đối diện góc 30° trong tam giác vuông bằng nửa cạnh huyền )

Xét tam giác ABK vuông tại K : \(\cos KBA=\frac{BK}{AB}\)

\(\Rightarrow AB=\frac{BK}{\cos KBA}=\frac{5,5}{\cos22^o}\approx5,93\left(cm\right)\)

Xét tam giác ANB vuông tại N : \(\sin ABN=\frac{AN}{AB}\)

\(\Rightarrow AN=AB\sin ABN=5,93.\sin38^o\approx3,65\left(cm\right)\)

b) Xét tam giác ANC vuông tại N : \(\sin ACN=\frac{AN}{AC}\)

\(AC=\frac{AN}{\sin ACN}\approx\frac{3,65}{\sin30^o}\approx7,3\left(cm\right)\)

13 tháng 7 2019

a)     Ta có: A I E ^ = A J E ^ = 90 0  nên tứ giác AIEJ nội tiếp.

E M C ^ = E J C ^ = 90 0  nên tứ giác CMJE nội tiếp.

Xét tam giác Δ A E C   v à   Δ I E M , có

A C E ⏜ = E M I ⏜  ( cùng chắn cung JE của đường tròn ngoại tiếp tứ giác CMJE).

E A C ⏜ = E I M ⏜  ( cùng chắn cung JE của đường tròn ngoại tiếp tứ giác AIEJ).

Do đó hai tam giác  Δ A E C   ~   Δ I E M  đồng dạng

⇒ A E E I = E C E M ⇒ E A . E M = E C . E I (đpcm)