Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: góc DFC=góc EBC
góc EFC=góc DAC
góc EBC=góc DAC
=>góc DFC=góc EFC
1) Chứng minh tứ giác AEHF nội tiếp đường tròn
BE là đường cao ∆ ABC ⇒ B E ⊥ A C ⇒ A E H ^ = 90 0
CF là đường cao ∆ ABC ⇒ C F ⊥ A B ⇒ A F H ^ = 90 0
Tứ giác AEHF có A E H ^ + A F H ^ = 180 0 nên tứ giác AEHF nội tiếp đường tròn
2) Chứng minh CE.CA = CD.CB
∆ ADC và ∆ BEC có
A D C ^ = B E C ^ = 90 0 (AD,BE là các đường cao)
C ^ chung
Do đó ∆ ADC ~ ∆ BEC(g-g)
⇒ D C E C = A C B C ⇒ D C . B C = C E . A C
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
góc BDH+góc BFH=180 độ
=>BDHF nội tiếp
b; góc ACK=1/2*sđ cung AK=90 độ
Xét ΔACK vuông tại C và ΔADB vuông tại D có
góc AKC=góc ABD
=>ΔACK đồng dạng với ΔADB
=>AC/AD=AK/AB
=>AC*AB=AD*AK
a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\)
nên BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{HDC}+\widehat{HEC}=180^0\)
Do đó: CDHE là tứ giác nội tiếp