K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2016

?o?n th?ng c: ?o?n th?ng [A, B] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng a: ?o?n th?ng [B, C] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng b: ?o?n th?ng [C, A] c?a H�nh tam gi�c TenDaGiac1 ?o?n th?ng h: ?o?n th?ng [B, D] ?o?n th?ng i: ?o?n th?ng [C, E] ?o?n th?ng m: ?o?n th?ng [B, I] ?o?n th?ng n: ?o?n th?ng [K, C] ?o?n th?ng p: ?o?n th?ng [I, K] ?o?n th?ng q: ?o?n th?ng [J, O] ?o?n th?ng r: ?o?n th?ng [D, O] ?o?n th?ng s: ?o?n th?ng [E, O] A = (2.65, 5.97) A = (2.65, 5.97) A = (2.65, 5.97) B = (-6.4, -9.49) B = (-6.4, -9.49) B = (-6.4, -9.49) C = (19.32, -10.71) C = (19.32, -10.71) C = (19.32, -10.71) ?i?m E: Giao ?i?m c?a f, c ?i?m E: Giao ?i?m c?a f, c ?i?m E: Giao ?i?m c?a f, c ?i?m D: Giao ?i?m c?a g, b ?i?m D: Giao ?i?m c?a g, b ?i?m D: Giao ?i?m c?a g, b ?i?m I: Giao ?i?m c?a j, k ?i?m I: Giao ?i?m c?a j, k ?i?m I: Giao ?i?m c?a j, k ?i?m K: Giao ?i?m c?a j, l ?i?m K: Giao ?i?m c?a j, l ?i?m K: Giao ?i?m c?a j, l ?i?m O: Trung ?i?m c?a a ?i?m O: Trung ?i?m c?a a ?i?m O: Trung ?i?m c?a a ?i?m J: Trung ?i?m c?a E, D ?i?m J: Trung ?i?m c?a E, D ?i?m J: Trung ?i?m c?a E, D

Gọi O là trung điểm BC, J là trung điểm DE. Do tam giác BEC vuông tại E mà EO là trung tuyến ứng với cạnh huyền nên OE = OB = OC. Tương tự OD = OB = OC. Từ đó ta có OE = OD hay tam tam giác OED cân tại O.

Lại có J là trung điểm DE nên \(OJ\perp DE\). Vậy thì OJ // BI // CK. Mà O là trung điểm BC nên OJ là đường trung bình hình thang CBKI. Vậy thì JI = JK.

Ta có \(JI=JK\Rightarrow JI-JE=JK-JD\Rightarrow EI=DK\left(đpcm\right)\)

9 tháng 9 2016

khó thế !

18 tháng 5 2020

giải câu b đi

16 tháng 9 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Ta có: BH ⊥ DE (gt)

CK ⊥ DE (gt)

⇒ BH // CK hay tứ giác BHKC là hình thang

Gọi M là trung điểm của BC, I là trung điểm của DE

* Trong tam giác BDC vuông tại D có DM là trung tuyến ứng với cạnh huyền BC.

⇒ DM = 1/2 BC (tính chất tam giác vuông)

* Trong tam giác BEC vuông tại E có EM là đường trung tuyến ứng với cạnh huyền BC.

⇒ EM = 1/2 BC (tính chất tam giác vuông)

Suy ra: DM = EM nên ΔMDE cân tại M

MI là đường trung tuyến nên MI là đường cao ⇒ MI ⊥ DE

Suy ra: MI // BH // CK

BM = MC

Suy ra: HI = IK (tính chất đường trung bình hình thang)

⇒ HE + EI = ID + DK

Mà EI = ID nên EH = DK

5 tháng 10 2017

Mình làm câu a thôi nha

a) Gọi M là trung điểm của BC , dễ dàng chứng minh được t/g MDE cân ở đỉnh M

Gọi I là trung điểm của DE thì MI vuông góc DE suy ra MI // BH // CE . MI là đường trung bình của hình thang BHKC có :

IH = IK

Từ đó suy ra IH - IE = IK - ID

               nên HE = KD hay EH = DK  ( đpcm )

27 tháng 3 2020

38i5t0 oQ@juoopjJJOJKLOJKOPKOKPURDTSE3SWDFFhuuhhjiojiojio