K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

Có góc BAC bằng 60 độ => góc C'HB'=120 độ=>

góc BHC=120 độ(1)

Có góc BAC=60 độ=>góc BOC=120 độ (2)

Từ (1) và (2) => BHC=BOC=120 độ

mà chúng nhìn đoạn BC

=> BHOC nội tiếp

a) Xét tứ giác BCB'C' có 

\(\widehat{BC'C}=\widehat{BB'C}\left(=90^0\right)\)

\(\widehat{BC'C}\) và \(\widehat{BB'C}\) là hai góc cùng nhìn cạnh BC

Do đó: BCB'C' là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

13 tháng 10 2023

a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>B,F,E,C cùng thuộc một đường tròn

b: Xét (O) có

ΔABA' là tam giác nội tiếp

AA' là đường kính

Do đó: ΔABA' vuông tại B

=>BA'\(\perp\)AB

mà CH\(\perp\)AB

nên BA'//CH

Xét (O) có

ΔACA' là tam giác nội tiếp

AA' là đường kính

Do đó: ΔACA' vuông tại C

=>AC vuông góc CA'

mà BH vuông góc AC

nên BH//A'C

Xét tứ giác BHCA' có

BH//CA'

BA'//CH

Do đó: BHCA' là hình bình hành