Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
a) Xét \(\Delta\)ABC có:BI,CK là hai đường cao
Mà BI cắt CK tại H(gt)
=> H là trực tâm \(\Delta\)ABC
=>AH cũng là đường cao thứ 3 của \(\Delta\)ABC
Xét \(\Delta\)ABI và \(\Delta\)ACK có:
^AIB=^AKC =90(gt)
^A: góc chung
=> \(\Delta\)ABI ~\(\Delta\)ACK(g.g)
b) xét \(\Delta\)ADC và \(\Delta\)AID có:
^ADC=^AID=90(gt)
^A:góc chung
=> \(\Delta\)ADC~\(\Delta\)AID(g.g)
=>\(\frac{AD}{AI}=\frac{AC}{AD}\)
=> AD^2 =AC*AI
1.
Tam giác AMC vuông tại M với đường cao MD
Áp dụng hệ thức lượng: \(AM^2=AD.AC\) (1)
Tương tự ta có:
\(AN^2=AE.AB\) (2)
Mặt khác xét hai tam giác vuông ABD và ACE có:
\(\widehat{BAC}\) chung
\(\Rightarrow\Delta_VABD\sim\Delta_VACE\) (g.g)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AD}{AE}\) \(\Leftrightarrow AB.AE=AC.AD\) (3)
(1);(2);(3) \(\Rightarrow AM^2=AN^2\) \(\Rightarrow AM=AN\)
Bài 2 tham khảo tại đây:
Cho tam giác ABC vuông tại A , đường cao AH . Biết AB/AC = 20/21 , AH = 420 . Tính chu vi tam giác ABC - Hoc24
Do: Góc ABD = Góc ACE (= 90 - A)
=> Δ ABD ∼ Δ ACE (2 Δ vuông)
=> AD.AC = AE.AB (tỉ lệ đồng dạng)
<=> AM2 = AN2 (Hệ thức lượng trong Δ vuông)
<=> AM = AN
Hay Δ AMN cân tại A.=>....
a) Ta có: \(\angle BEC=\angle BDC=90\Rightarrow BCDE\) nội tiếp \(\Rightarrow\angle ADE=\angle ABC\)
Xét \(\Delta ADE\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle ADE=\angle ABC\end{matrix}\right.\)
\(\Rightarrow\Delta ADE\sim\Delta ABC\left(g-g\right)\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\Rightarrow AD.AC=AE.AB\)
b) Vì \(\Delta AMC\) vuông tại M có \(MD\bot AC\Rightarrow AM^2=AD.AC\)
Vì \(\Delta ANB\) vuông tại N có \(NE\bot AB\Rightarrow AN^2=AE.AB\)
mà \(AE.AB=AD.AC\Rightarrow AM^2=AN^2\Rightarrow AM=AN\)
\(\Rightarrow\Delta AMN\) cân tại A
c) Từ D kẻ đường thẳng vuông góc với DE cắt CE tại F
Xét \(\Delta DEF\) và \(\Delta DBC:\) Ta có: \(\left\{{}\begin{matrix}\angle EDF=\angle BDC=90\\\angle DEF=\angle DBC\left(BEDCnt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta DEF\sim\Delta DBC\left(g-g\right)\Rightarrow\dfrac{DE}{EF}=\dfrac{DB}{BC}\Rightarrow DE.BC=DB.EF\)
Ta có: \(\angle EDF-\angle BDF=\angle CDB-\angle BDF\left(=90-\angle BDF\right)\)
\(\Rightarrow\angle EDB=\angle CDF\)
Xét \(\Delta DEB\) và \(\Delta DFC:\) Ta có: \(\left\{{}\begin{matrix}\angle EDB=\angle FDC\\\angle DCF=\angle DBE\left(BEDCnt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta DEB\sim\Delta DFC\left(g-g\right)\Rightarrow\dfrac{CF}{BE}=\dfrac{CD}{BD}\Rightarrow BE.CD=BD.CF\)
\(\Rightarrow BE.CD+DE.BC=BD.CF+BD.EF=BD\left(CF+EF\right)\)
\(=BD.CE\)
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
b: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
=>tan ADH=tan ABD=tan ABC=AC/AB=4/3
Xét ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC=HD*HC
Trong t/g vuông ANB có NE là đường cao: AN^2 = AE.AB
Trong t/g vuông AMC có MD là đường cao: AM^2 = AD.AC
Mà t/g ABD ~ t/g ACE (g.g) nên AB/AC = AD/AE <=> AB.AE = AC.AD
=> AN^2 = AM^2 <=> AN = AM
a) xét tam giác ACL và tam giác AKB, ta có:
=> tam giác ALC ĐỒNG DẠNG tam giác AKB ( g-g)
=> AL = AC
AK AB
=> ALA.AB=AK.AC
B) xét tam giác ABF vuông tại F có đường cao FL, ta có:
AF2= AL.AB (HTL)
XÉT TAM GIÁC AEC VUÔNG TẠI E, CÓ ĐƯỜNG CAO EK, TA CÓ:
AE2 AK.AC ( HTL)
TA CÓ:
=> AF=AE
XÉT TAM GIÁC AEF, TA CÓ:
AF=AE(CMT)
=> tam giác AEF cân tại A