K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

\(cosA+cosB+cosC\le\dfrac{3}{2}\\ \Leftrightarrow2cos\dfrac{A+B}{2}.cos\dfrac{A-B}{2}+1-2sin^2\dfrac{C}{2}\le\dfrac{3}{2}\\ \Leftrightarrow Sin^2\dfrac{C}{2}-sin\dfrac{C}{2}.cos\dfrac{A-B}{2}+\dfrac{1}{4}\ge0\\ \Leftrightarrow\left(sin\dfrac{C}{2}-\dfrac{1}{2}cos\dfrac{A-B}{2}\right)^2-\dfrac{1}{4}cos^2\dfrac{A-B}{2}+\dfrac{1}{4}\ge0\\ \Leftrightarrow\left(sin\dfrac{C}{2}-\dfrac{1}{2}cos\dfrac{A-B}{2}\right)^2+\dfrac{1}{4}\left(1-cos^2\dfrac{A-B}{2}\right)\Leftrightarrow\left(sin\dfrac{C}{2}-\dfrac{1}{2}cos\dfrac{A-B}{2}\right)^2+\dfrac{1}{4}sin^2\dfrac{A-B}{2}\ge0\)=> Luôn đúng

=>đpcm

7 tháng 6 2021

a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)

b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)

Tương tự \(\Rightarrow CH=BC.sin^2B\)