Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ AH ⊥ BC, tại H . Áp dụng hệ thức giữa cạnh và góc trong ∆AHC vuông tại H, chúng ta tính được AH ≈ 2,68cm; HC ≈ 2,25cm
Tương tự trong tam giác vuông HAB, tính được BH ≈ 1,34cm => BC ≈ 3,59cm, S A B C ≈ 4 , 81 c m 2
Kẻ đường cao AD
Xét tam giác vuông ACD, có:
Xét tam giác vuông ABD có:
Suy ra BC = BD + CD = 3,8
Đáp án cần chọn là: B
a) Trong tam giác vuông BCH, ta có:
CH=BC.sinB^=12.sin60≈10,392 (cm)
Trong tam giác vuông ABC, ta có:
\(A\)=180−(60+40)=80
Trong tam giác vuông ACH, ta có:
\(AC=\dfrac{CH}{sinA}=\dfrac{10,932}{sin80}=10,552\left(cm\right)\)
b) Kẻ AK⊥BCAK⊥BC
Trong tam giác vuông ACK, ta có:
AK=AC.sinC≈10,552.sin40=6,783 (cm)
Vậy SABC=12.AK.BC≈12.6,783.12=40,696 (cm2)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{3}{5}\)
nên \(\widehat{B}\simeq36^052'\)
Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-36^052'=53^08'\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot7,5=4,5\cdot6=27\)
=>AH=27/7,5=3,6(cm)
Kẻ đường cao AD
Xét tam giác vuông ACD, có:
Xét tam giác vuông ABD, có:
Suy ra BC = BD + DC = 0,94 + 3,69 = 4,63
Đáp án cần chọn là: C