K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)Vì BD là tia phân giác của \(\widehat{B}\)nên \(\widehat{ABE}=\widehat{EBC=}30^{o^{ }}\)

Vì AE//BC nên \(\widehat{E}=\widehat{EBC}=30^o\)(so le trong)

 Xét \(\Delta ABE\)có : \(\widehat{E}=\widehat{ABE}=30^o\)=> \(\Delta ABE\)cân (đ/n)

b) Vì  \(\Delta ABE\)cân nên \(\widehat{BAE}\)= 180o-30o.2=120o

13 tháng 4 2019

Hình (tự vẽ)

a) ΔABE cân

Xét hai tam giác vuông ABH và EBH có:

\(\widehat{ABH}=\widehat{EBH}\)(BH là phân giác)

HB là cạnh chung.

Do đó: ΔABH = ΔEBH (cạnh huyền - góc nhọn)

⇒ BA = BE (2 cạnh tương ứng)

⇒ ΔABE cân tại B.

b) ΔABE đều

Vì ΔABE là tam giác cân (câu a) có góc B bằng 60o (gt) ⇒ ΔABE là tam giác đều.

c) AED cân 

Vì ΔABH = ΔEBH (câu a) ⇒ AH = EH (2 cạnh tương ứng)

Xét hai tam giác vuông ADH và EDH có:

AH = EH (cmt)

HD: cạnh chung

Do đó: ΔADH = ΔEDH (2 cạnh góc vuông)

⇒ \(\widehat{DAH}=\widehat{DEH}\)(góc tương ứng)

⇒ ΔAED cân tại D

d) ΔABF cân

Vì AF// HB ⇒ góc BAF = ABH = 30o (so le trong)     (1)

Ta có: \(\widehat{ABC}+\widehat{ABF}=180^o\)(kề bù)

Thay: 60o + ABF = 180o

⇒ ABF = 180o - 60o = 120o

Xét ΔABF, ta có: 

\(\widehat{ABF}+\widehat{BFA}+\widehat{FAB}=180^o\)(ĐL)

Thay: 120o + BFA + 30o = 180o

⇒ BFA = 180 - 120 - 30 = 30 (2)

Từ (1) và (2) suy ra: ΔABF cân tại B.

11 tháng 12 2021

a: \(\widehat{B}=60^0;\widehat{C}=40^0\)

12 tháng 8 2017

Giúp mình với nhé :) <3

8 tháng 12 2016

a) BE là phân giác ABC => ABE = CBE

AE //BC => AEB = CBE (so le trong)

=> ABE = AEB

=> tam giác BAE cân tại A ( đpcm)

b) Có: ABE = CBE = ABC : 2 = 50o : 2 = 25o

Tam giác BAE cân tại A có: BAE = 180o - 2.ABE

= 180o - 2.25o = 130o