K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2019

AB^2+AC^2 mà

11 tháng 4 2020

Phí ngoài dựng tam giác đều BCE 

ta có

\(\widehat{ACB}+60^0=\widehat{ACB}+\widehat{DCA}=\widehat{ACB}+\widehat{BCE}\)

=>\(\widehat{DCA}=\widehat{BCE}=>\widehat{ACE}=\widehat{DCB}\)

xét tam giác DCB zà tam giác ACE có

DC=CA

góc DCB = góc ACE

CB=CE

=> 2 tam giác = nhau

=> DB=AE ( 2 cạnh tương ứng )

lại có

\(\widehat{ABE}=\widehat{ABC}+\widehat{CBE}=30^0+60^0=90^0\)

=> tam giác ABE zuông tại B

áp dụng đ/l pi-ta-go zô tam giác zuông ABE zuông tại B ta đc

\(AE^2=AB^2+BE^2\)

ma \(\hept{\begin{cases}AE=DB\\BE=BC\end{cases}}\)

\(=>BD^2=AB^2+BC^2\)

17 tháng 8 2018

tam giac abc co vuong ko ban

17 tháng 8 2018

chắc ko đâu nhỉ :))

1 tháng 8 2020

A B C D E O

                                                           Bài giải

a) + Vì \(\Delta ABC\)và \(\Delta ACD\)đều

       \(\Rightarrow\)\(\widehat{BAC}=\widehat{ACD}\left(=60^0\right)\)

        mà chúng ở vị trí so le trong 

       \(\Rightarrow\)\(AD//BC\)(1)

   + Chứng minh tương tự: \(AD//CE\)(2)

   + Từ (1) và (2) \(\Rightarrow\)\(AD//BE\)

       \(\Rightarrow\)Tứ giác \(ADEB\)là hình thang

   + Vì \(\Delta ABC\)và \(\Delta DCE\)đều

       \(\Rightarrow\)\(\widehat{ABC}=\widehat{DEC}\left(=60^0\right)\)

       \(\Rightarrow\)Hình thang \(ADEB\)là hình thang cân ( ĐPCM )

b) + Vì \(\Delta ABC\)đều \(\Rightarrow\)\(AB=BC=AC\)(3)

         \(\Delta ACD\)đều \(\Rightarrow\)\(DA=AC=CD\)(4)

         \(\Delta DCE\)đều \(\Rightarrow\)\(DC=CE=ED\)(5)

   + Từ (3),(4) và (5) \(\Rightarrow\)\(AB=BC=AC=DA=DC=CE=ED\)

         \(\Rightarrow\)\(AD=\frac{1}{2}BE\)\(\Rightarrow\)\(\frac{AD}{BE}=\frac{1}{2}\)

   + Vì ​\(AD//BE\)\(\Rightarrow\)\(\frac{AO}{OE}=\frac{DO}{OB}=\frac{AD}{BE}\)( định lí Ta-lét )​

       mà \(\frac{AD}{BE}=\frac{1}{2}\)\(\Rightarrow\)\(\frac{AO}{OE}=\frac{DO}{OB}=\frac{1}{2}\)

 Vậy O chia mỗi đường chéo thành 2 phần theo tỉ lệ 1:2

 ^_^ chúc bn hok tốt nha ^_^

9 tháng 7 2020

1)

A B H D c m n

Kẻ AH là đường cao của ABC

Ta có :\(S_{ABCD}=\frac{1}{2}.AH.BD ; S_{ADC}=\frac{1}{2}.AH.CD\)

\(\Rightarrow\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.BD}{\frac{1}{2}.AH.CD}=\frac{BD}{CD}\left(1\right)\)

\(\Delta ABC\)có AD là tia phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)

Từ (1)(2) 

\(\Rightarrow\frac{S_{ABCD}}{S_{ACD}}=\frac{AB}{AC}=\frac{m}{n}\)

Vậy tỉ số của tam giác ABD và ACD là \(\frac{m}{n}\)

26 tháng 2 2020

Gọi M là giao điểm của AE và CF

ADFE là hình bình hành nên ^ADF = ^AEF (hai góc đối)

Suy ra ^BDF = ^FEC 

Xét \(\Delta\)BDF và \(\Delta\)FEC có:

       BD = FE (cùng bằng AD)

       ^BDF = ^FEC (cmt) 

      DF = EC ( cùng bằng AE)

Do đó \(\Delta\)BDF = \(\Delta\)FEC (c.g.c) suy ra BF = CF (1) và ^BFD = ^FCE

Mặt khác ^AMC = ^DFC (do DF // AE)

^AMC = ^MEC + ^FCE = 600 + ^FCE và ^DFC = ^BFC + ^BFD

Do đó ^BFC = 600 (2)

Từ (1) và 2) suy ra \(\Delta\)FBC đều (đpcm)

26 tháng 5 2016

Bạn không biết làm câu nào v

6 tháng 10 2016

à, tính góc C bạn ạ. Bạn có thể giúp mình ko?

25 tháng 8 2018

câu a bài 2 nhá

a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ