Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a) + Vì \(\Delta ABC\)và \(\Delta ACD\)đều
\(\Rightarrow\)\(\widehat{BAC}=\widehat{ACD}\left(=60^0\right)\)
mà chúng ở vị trí so le trong
\(\Rightarrow\)\(AD//BC\)(1)
+ Chứng minh tương tự: \(AD//CE\)(2)
+ Từ (1) và (2) \(\Rightarrow\)\(AD//BE\)
\(\Rightarrow\)Tứ giác \(ADEB\)là hình thang
+ Vì \(\Delta ABC\)và \(\Delta DCE\)đều
\(\Rightarrow\)\(\widehat{ABC}=\widehat{DEC}\left(=60^0\right)\)
\(\Rightarrow\)Hình thang \(ADEB\)là hình thang cân ( ĐPCM )
b) + Vì \(\Delta ABC\)đều \(\Rightarrow\)\(AB=BC=AC\)(3)
\(\Delta ACD\)đều \(\Rightarrow\)\(DA=AC=CD\)(4)
\(\Delta DCE\)đều \(\Rightarrow\)\(DC=CE=ED\)(5)
+ Từ (3),(4) và (5) \(\Rightarrow\)\(AB=BC=AC=DA=DC=CE=ED\)
\(\Rightarrow\)\(AD=\frac{1}{2}BE\)\(\Rightarrow\)\(\frac{AD}{BE}=\frac{1}{2}\)
+ Vì \(AD//BE\)\(\Rightarrow\)\(\frac{AO}{OE}=\frac{DO}{OB}=\frac{AD}{BE}\)( định lí Ta-lét )
mà \(\frac{AD}{BE}=\frac{1}{2}\)\(\Rightarrow\)\(\frac{AO}{OE}=\frac{DO}{OB}=\frac{1}{2}\)
Vậy O chia mỗi đường chéo thành 2 phần theo tỉ lệ 1:2
^_^ chúc bn hok tốt nha ^_^
1)
Kẻ AH là đường cao của ABC
Ta có :\(S_{ABCD}=\frac{1}{2}.AH.BD ; S_{ADC}=\frac{1}{2}.AH.CD\)
\(\Rightarrow\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.BD}{\frac{1}{2}.AH.CD}=\frac{BD}{CD}\left(1\right)\)
\(\Delta ABC\)có AD là tia phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)
Từ (1)(2)
\(\Rightarrow\frac{S_{ABCD}}{S_{ACD}}=\frac{AB}{AC}=\frac{m}{n}\)
Vậy tỉ số của tam giác ABD và ACD là \(\frac{m}{n}\)
Gọi M là giao điểm của AE và CF
ADFE là hình bình hành nên ^ADF = ^AEF (hai góc đối)
Suy ra ^BDF = ^FEC
Xét \(\Delta\)BDF và \(\Delta\)FEC có:
BD = FE (cùng bằng AD)
^BDF = ^FEC (cmt)
DF = EC ( cùng bằng AE)
Do đó \(\Delta\)BDF = \(\Delta\)FEC (c.g.c) suy ra BF = CF (1) và ^BFD = ^FCE
Mặt khác ^AMC = ^DFC (do DF // AE)
^AMC = ^MEC + ^FCE = 600 + ^FCE và ^DFC = ^BFC + ^BFD
Do đó ^BFC = 600 (2)
Từ (1) và 2) suy ra \(\Delta\)FBC đều (đpcm)
câu a bài 2 nhá
a) Gọi D là trung điểm BI => góc IDM = 45 độ
DM // IC ( đường trung bình )
=> góc BIC = 135 độ
=> 180 -1/2( góc B + góc C ) =135 độ
=> góc B + góc C = 90 độ
=> góc A = 90 độ
AB^2+AC^2 mà
Phí ngoài dựng tam giác đều BCE
ta có
\(\widehat{ACB}+60^0=\widehat{ACB}+\widehat{DCA}=\widehat{ACB}+\widehat{BCE}\)
=>\(\widehat{DCA}=\widehat{BCE}=>\widehat{ACE}=\widehat{DCB}\)
xét tam giác DCB zà tam giác ACE có
DC=CA
góc DCB = góc ACE
CB=CE
=> 2 tam giác = nhau
=> DB=AE ( 2 cạnh tương ứng )
lại có
\(\widehat{ABE}=\widehat{ABC}+\widehat{CBE}=30^0+60^0=90^0\)
=> tam giác ABE zuông tại B
áp dụng đ/l pi-ta-go zô tam giác zuông ABE zuông tại B ta đc
\(AE^2=AB^2+BE^2\)
ma \(\hept{\begin{cases}AE=DB\\BE=BC\end{cases}}\)
\(=>BD^2=AB^2+BC^2\)