K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

Ta có: AE = EB 
CD/DB = AC/AB (tính chất đường phân giác) 
AH = AB.cosA, HC = BC.cosC 
Theo định lí Céva ta có: 
AD, BH, CE đồng quy <=> 
AH/HC.CD/DB.BE/EA = 1 
<=> AH/HC.CD/DB = 1 
<=> AB.cosA/(BC.cosC).AC/AB = 1 
<=> (AC.cosA)/(BC.cosC) = 1 
<=> AC.cosA = BC.cosC (đpcm)

P/s: Tham khảo nha

DD
24 tháng 5 2022

a) Ta có: \(\widehat{AMO}=\widehat{ADO}=\widehat{ANO}=90^o\) nên \(M,N,D\) cùng nhìn \(AO\) dưới một góc vuông suy ra \(M,D,O,N,A\) cùng thuộc một đường tròn. 

b) Gọi \(F\) là giao điểm của \(AC\) và đường tròn \(\left(O\right)\).

\(\Delta ANF\sim\Delta ACN\left(g.g\right)\) suy ra \(AN^2=AC.AF\).

Xét tam giác \(AHN\) và tam giác \(AND\):

\(\widehat{HAN}=\widehat{NAD}\) (góc chung) 

\(\widehat{ANH}=\widehat{ADN}\) (vì \(AMDON\) nội tiếp, \(\widehat{ANH},\widehat{ADN}\) chắn hai cung \(\stackrel\frown{AM},\stackrel\frown{AN}\) mà \(AM=AN\))

\(\Rightarrow\Delta AHN\sim\Delta AND\left(g.g\right)\)

suy ra \(AN^2=AH.AD\)

suy ra \(AC.AF=AH.AD\)

\(\Rightarrow\Delta AFH\sim\Delta ADC\left(c.g.c\right)\Rightarrow\widehat{AFH}=\widehat{ADC}=90^o\)

suy ra \(\widehat{HFC}=90^o\) mà \(\widehat{BFC}=90^o\) (do \(F\) thuộc đường tròn \(\left(O\right)\))

suy ra \(B,H,F\) thẳng hàng do đó \(BH\) vuông góc với \(AC\).

Tam giác \(ABC\) có hai đường cao \(AD,BF\) cắt nhau tại \(H\) suy ra \(H\) là trực tâm tam giác \(ABC\)

23 tháng 5 2022

Bạn check lại và đánh lại đề để mình có thể giúp đỡ nha.

a

Đường tròn (O), đường kính AH có 

AMH^=90∘⇒HM⊥AB.

ΔAHB vuông tại H có 

HM⊥AB⇒AH2=AB.AM.

Chứng minh tương tự AH2=AC.AN.

\(\Rightarrow\) AB.AM=AC.AN.

B

Theo câu a ta có 

AB.AM=AC.AN⇒AMAC=ANAB.

Tam giác AMN và tam giác ACB có MAN^ chung và AMAC=ANAB.

⇒ΔAMN∼ΔACB (c.g.c).

\(\widehat{ACB}\)

c.

Tam giác ABC vuông tại A có I là trung điểm của 

BC⇒IA=IB=IC.

⇒ΔIAC cân tại 

Theo câu b ta có \(\widehat{AMN}\)
 

Mà \(\widehat{BAD}\)

\(\widehat{BAD}\)

BAD^+IAC^=90∘⇒BAD^+AMN^=90∘⇒ADM^=90∘.

Ta chứng minh ΔABC vuông tại A có 

AH⊥BC⇒AH2=BH.CH.

Mà 

\(\Rightarrow\) BMNC là tứ giác nội tiếp.

10 tháng 4 2021

TRẢ HIỂU GÌ ?????????????????????

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.