Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có GH = GA (cùng bằng 2GD) nên điểm đối xứng với A qua G là H. Tương tự, ta có điểm đối xứng với B qua G là I và điểm đối xứng với C qua G là K
*) Tam giác ABC có ba đường trung tuyến AD, BE, CF cắt nhau tại G nên G là trọng tâm tam giác ABC.
* Ta có: GD = DH (tính chất đối xứng tâm)
⇒ GH = 2GD (l)
GA = 2GD (tính chất đường trung tuyến của tam giác) (2)
Từ (1) và (2) suy ra: GA = GH
Suy ra điểm đối xứng với điểm A qua G là H.
* Ta có: GE = EI (tính chất đối xứng tâm)
⇒ GI = 2GE (3)
Lại có, GB = 2GE (tính chất đường trung tuyến của tam giác) (4)
Từ (3) và (4) suy ra: GB = GI
Suy ra điểm đối xứng với điểm B qua G là I.
+) Ta có: GF = FK (tính chất đối xứng tâm)
⇒ GK = 2GF (5)
GC = 2GF (tính chất đường trung tuyến của tam giác) (6)
Từ (5) và (6) suy ra: GC = GK
Suy ra điểm đối xứng với điểm C qua G là điểm K
a , b tự lm nha ( dễ mà )
c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BC
⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI
Và MM là trung điểm của HKHK
⇒DM⇒DM là đường trung bình ΔHIKΔHIK
⇒DM∥IK⇒DM∥IK
⇒BC∥IK⇒BC∥IK
⇒BCKI⇒BCKI là hình thang
ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến
⇒ΔCHI⇒ΔCHI cân đỉnh CC
⇒CI=CH⇒CI=CH (*)
Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)
Từ (*) và (**) suy ra CI=BKCI=BK
Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK
Suy ra BCIKBCIK là hình thang cân.
Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)
⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC
...
a.Vì B,G đối xứng qua AD
\(\rightarrow\widehat{DAB}=\widehat{DAG}\)
Mà AD là phân giác
\(\widehat{BAC}\rightarrow\widehat{BAD}=\widehat{DAC}\)
\(\rightarrow\widehat{DAG}=\widehat{DAC}\) \(\rightarrow\) A,G,C thẳng hàng
Chứng minh tương tự →A,B,Hthẳng hàng $
Lại có B,G đối xứng qua AD và C,H đối xứng qua AD
\(\rightarrow\Delta ADH=\Delta ADC\left(c.c.c\right)\rightarrow\widehat{AHD}=\widehat{ACB}\)
Mà \(\Delta AHG=\Delta ABC\left(c.g.c\right)\rightarrow\widehat{AHG}=\widehat{ACB}\)
\(\rightarrow\widehat{AHD}=\widehat{AHG}\)\(\rightarrow\)G,D,H thẳng hàng
b.Ta có :\(\frac{DG}{DH}=\frac{DB}{DC}=\frac{AB}{AC}\)
\(\rightarrow BD=\frac{AB}{AC}.DC\)
\(\frac{DI}{DK}=\frac{BI-BD}{CK-DC}=\frac{AB-BD}{AC-CD}=\frac{AB-\frac{AB}{AC}.DC}{AC-CD}=\frac{AB}{AC}.\frac{AC-CD}{AC-CD}=\frac{AB}{AC}\)
\(\rightarrow\frac{DI}{DK}=\frac{DG}{DH}\rightarrow IG//HK\)
cảm ơn bn nha!!!