K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Vì O lầ điểm cách đều 3 cạnh của \(\Delta ABC\) nên:
+) \(OD=OE=OF\)

+) \(AO\)\(BO\) và \(CO\) là 3 đường phân giác của \(\Delta ABC\)

Xét \(\Delta BFO\) và \(\Delta BDO\) có:

\(\widehat{BFO}\)=\(\widehat{BDO}\)=90o

\(BO\) chung

\(OF=OD\) (CMT)

\(\Rightarrow\Delta BFO=\Delta BDO\) (ch-cgv)

\(\Rightarrow BF=BD\)

\(\Rightarrow\Delta BFD\) cân tại \(B\)

\(\Rightarrow\widehat{BFD}\)=\(\widehat{BDF}\)= ( \(180^o\)\(\widehat{FBD}\)) : 2 \(\left(1\right)\)

Vì \(BA=BM\) (gt) nên \(\Delta BAM\) cân tại \(B\)

\(\Rightarrow\widehat{BAM}\)=\(\widehat{BMA}\)= (\(180^o\)-\(\widehat{ABM}\)) : 2 \(\left(2\right)\)
Từ \(\left(1\right)\)\(\left(2\right)\) \(\Rightarrow\widehat{BFD}\)=\(\widehat{BAM}\) mà chúng ở vị trí đồng vị nên \(DF\)//\(AM\)

\(\Rightarrow\) Tứ giác \(AFDM\) là hình thang \(\left(3\right)\)

Từ \(\left(2\right)\) và \(\left(3\right)\) \(\Rightarrow\) \(AFDM\) là hình thang cân

                     \(\Rightarrow\) \(MF=AD\) \(\left(4\right)\)

CM tương tự ta được: \(AEDN\) là hình thang cân

                               \(\Rightarrow\) \(NE=AD\) \(\left(5\right)\)

Từ \(\left(4\right)\) và \(\left(5\right)\) \(\Rightarrow MF=NE\)

b) Xét \(\Delta ODM\) và \(\Delta OFA\) có:

\(OD=OF\) (CMT)

\(\widehat{ODM}\)=\(\widehat{OFA}\)=\(90^o\)

\(OM=FA\) (\(AFDM\) là hình thang cân)

\(\Rightarrow\Delta ODM=\Delta OFA\) (c.g.c)

\(\Rightarrow OM=OA\left(6\right)\)

CM tương tự ta được \(\Delta ODN=\Delta OEA\) (c.g.c)

                             \(\Rightarrow\)\(ON=OA\) \(\left(7\right)\)

Từ \(\left(6\right)\) và \(\left(7\right)\) \(\Rightarrow OM=ON\)

                        \(\Rightarrow\) \(\Delta MON\) cân tại \(O\)

​​Mình biết bài này là từ 2019 rồi nhưng mà đề này mình thấy chưa ai làm nên mình làm để có bạn nào tìm thì sẽ có để tham khảo.

 
23 tháng 7 2022

vâng baayh là 2022 r nhưng e vẫn tìm câu trl của tiền bối ạ :33

15 tháng 8 2017

1,Cho tam giác ABC gọi G là trọng tâm.Đường thẳng d không cắt tam giác ABC.Gọi A',B',C',G' lần lượt là hình chiếu của A,B,C,G trên đường thẳng d.Chứng minh rằng GG'=(AA'+BB'+CC')/3 

bạn dúp mình giải đc ko

21 tháng 8 2017

Bài của bạn là toán lớp mấy vậy

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC