Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đo: ΔABC đồng dạng với ΔHBA
b: Ta có: ΔABC đồng dạg với ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
c: Xét ΔABH vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
Xét ΔADE và ΔACB có
AD/AC=AE/AB
góc DAE chung
DO đó: ΔADE\(\sim\)ΔACB
a)Xét tam giác ABC và tam giác HAC có :
\(\widehat{BAC}=\widehat{AHC}\)
chung \(\widehat{BCA}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HAC (g-g)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)
\(\Leftrightarrow AH\times BC=AB\times AC\left(đpcm\right)\)
Trong tam giác ABH có BO là phân giác của góc ABH nen theo t/c đường phân giác trong tam giác ta có
OA/OH=AB/BH
hay 5/4=7,5/BH
BH=6cm
Mặt khác AH là đường cao đồng thời là đường trung tuyến nên H là trung điểm BC
suy ra BC=2BH
BC=6.2=12cm