Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là phân giác
nên AM là đường cao
c: Xét ΔAMD vuông tại D và ΔAME vuông tại E có
AM chung
\(\widehat{MAD}=\widehat{MAE}\)
Do đó: ΔAMD=ΔAME
Suy ra: AD=AE
a) Xét ΔAMB vuông tại M và ΔAMC vuông tại M có
AB=AC(ΔABC cân tại A)
AM chung
Do đó: ΔAMB=ΔAMC(cạnh huyền-cạnh góc vuông)
Suy ra: MB=MC(hai cạnh tương ứng)
b) Ta có: ΔAMB=ΔAMC(cmt)
nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
c) Xét ΔDMB vuông tại D và ΔEMC vuông tại E có
MB=MC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDMB=ΔEMC(cạnh huyền-góc nhọn)
Suy ra: DM=EM(hai cạnh tương ứng)
Xét ΔMDE có MD=ME(cmt)
nên ΔMDE cân tại M(Định nghĩa tam giác cân)
a) M là trung điểm của BC
=> BM=CM
tam giác ABC cân tại A
=> AB=AC
xét tam giác ABM và tam giác ACM có
AB=AC
BM=CM
cạnh AM chung
do đó : tam giác ABM= tam giác ACM ( c.c.c)
b) do tam giác ABM = tam giác ACM
=> góc A1 = góc A2
xét tam giác AEM và tam giác AFM có
cạnh AM chung
góc A1= góc A2
góc AEM=góc AFM =90 độ
do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)
c) gọi N là giao của AM va EF
do tam giác AEM= tam giác AFM
=> AE=AF
xét tam giác AEN và tam giác AFN có
cạnh AN chung
góc A1 = góc A2
AE=AF
do đó tam giác AEN=tam giác AFN ( c.g.c)
=> góc N1=góc N2
mà góc N1 + góc N2 = 180 độ ( kề bù)
=> góc N1= góc N2=90 độ
=> AN vuông góc EF
hay AM vuông góc EF