Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có
BH chung
AH=DH(H là trung điểm của AD)
Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)
⇒AB=DB(hai cạnh tương ứng)(1)
Xét ΔAMB và ΔEMC có
AM=EM(M là trung điểm của AE)
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔEMC(c-g-c)
⇒AB=EC(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra BD=CE(đpcm)
b) Ta có: ΔABH=ΔDBH(cmt)
nên \(\widehat{ABH}=\widehat{DBH}\)(hai góc tương ứng)
hay \(\widehat{ABC}=\widehat{DBC}\)
mà tia BC nằm giữa hai tia BA,BD
nên BC là tia phân giác của \(\widehat{ABD}\)(đpcm)
c) Xét ΔACH vuông tại H và ΔDCH vuông tại H có
CH chung
AH=DH(H là trung điểm của AD)
Do đó: ΔACH=ΔDCH(hai cạnh góc vuông)
⇒CA=CD(hai cạnh tương ứng)
Ta có: BA=BD(cmt)
nên B nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: CA=CD(cmt)
nên C nằm trên đường trung trực của AD(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (3) và (4) suy ra BC là đường trung trực của AD(đpcm)
d) Xét ΔBME và ΔCMA có
BM=CM(M là trung điểm của BC)
\(\widehat{BME}=\widehat{CMA}\)(hai góc đối đỉnh)
ME=MA(M là trung điểm của AE)
Do đó: ΔBME=ΔCMA(c-g-c)
⇒BE=CA(hai cạnh tương ứng)
Xét ΔABC và ΔECB có
BC chung
AB=EC(cmt)
CA=BE(cmt)
Do đó: ΔABC=ΔECB(c-c-c)
a) Xét tam giác ABC và AED có: AB = AE ; góc BAC = EAD (= 90o); AC = AD
=> tam giác ABC = AED (c - g - c)
b) Trong tam giác vuông AHB có: góc HBA + A2 = 90o
mà góc A1 + A2 = 90o
=> góc A1 = góc HBA mà góc HBA = DEA (tam giác ABC = AED)
=> góc A1 = góc DEA => tam giác MEA cân tại M => ME = MA (1)
Tương tư, trong tam giác vuông AHC có: A2 + HCA = 90o
mà A2 + A1 = 90o
=> góc HCA = A1 mà góc HCA = MDA ( do tam giác ABC = AED)
=> góc A1 = góc MDA => tam giác MAD cân tại M => MA = MD (2)
Từ (1)(2) => ME = MD => M là trung điểm của DE => AM là trung tuyến của tam giác ADE