Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ (Bạn tự vẽ hình giùm. Vẽ hình dễ)
a/ \(\Delta ACE\)vuông và \(\Delta AKE\)vuông có: \(\widehat{CAE}=\widehat{EAK}\)(AE là đường phân giác của \(\Delta ABC\))
Cạnh huyền AE chung
=> \(\Delta ACE\)vuông = \(\Delta AKE\)vuông (cạnh huyền - góc nhọn) (đpcm)
b/ Ta có \(\Delta ACE\)= \(\Delta AKE\)(cm câu a) => AC = AK (hai cạnh tương ứng)
Gọi M là giao điểm của AE và CK.
\(\Delta ACM\)và \(\Delta AKM\)có: AC = AK (cmt)
\(\widehat{CAM}=\widehat{MAK}\)(AM là đường phân giác của \(\Delta ABC\))
Cạnh AM chung
=> \(\Delta ACM\)= \(\Delta AKM\)(c - g - c) => CM = KM (hai cạnh tương ứng) (1)
và\(\widehat{AMC}=\widehat{AMK}\)(hai góc tương ứng)
Mà \(\widehat{AMC}+\widehat{AMK}\)= 180o (kề bù)
=> 2\(\widehat{AMC}\)= 180o
=> \(\widehat{AMC}\)= 90o
=> AM \(\perp\)CK (2)
Từ (1) và (2) => AE là đường trung trực của CK (đpcm)
a) xét tam giác AHB vuông tại H và tam giác AKC vuông tại K có
góc A chung
AB = AC (gt)
Vậy tam giác AHB = tam giác AKC ( cạnh huyền góc nhọn)
suy ra BH = CK, AH = AK
b) ta có AH = AK; AB = AC
mà BK = AB - AK và HC = AC - AH
=> Bk = HC
Xét hai tam giác vuông tam giác BIK và tam giác CIH có:
góc KIB = góc HIC ( đối đỉnh)
BK = HC (cmt)
Vậy tam gics BIK = tam giác CIH
c) M là trung điểm của BC nên AM là đường trung tuyến của tam giác ABC
mà tam giác ABC là tam giác cân tại A nên AM đồng thời là trung tuyến, đường cao
mặt khác BH và Ck cũng là đường cao của tam giác ABC nên BH; CK; Am đồng quy tại 1 điểm
Suy ra A; I; M thẳng hàng
kẻ hình thoy có cần bài làm k bn???////