K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

a, Xét ΔABHΔABH và ΔACHΔACH có:

AB=ACAB=AC

ˆBAH=ˆCAHBAH^=CAH^

AHAH chung

⇒ΔABH=ΔACH(c−g−c)

 

b, Xét ΔABCΔABC có: AB=AC

⇒ΔABC⇒ΔABC cân tại A

Xét ΔABCΔABC cân tại A có: AH là đường cao ứng với cạnh đáy BC

⇒AH⇒AH là đường cao

⇒AH⊥BC

17 tháng 12 2021

Thank kiu nha

a: Xét ΔAOC và ΔBOC có

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)

OC chung

Do đó:ΔAOC=ΔBOC

b: Ta có: ΔAOC=ΔBOC

nên CA=CB và \(\widehat{OCA}=\widehat{OCB}\)

hay CO là tia phân giác của góc BCA

a) Xét ΔBAE có BA=BE(gt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Suy ra: \(\widehat{BAE}=\widehat{BEA}\)(hai góc ở đáy)

mà \(\widehat{BAE}+\widehat{CAE}=90^0\)

và \(\widehat{BEA}+\widehat{HAE}=90^0\)

nên \(\widehat{CAE}=\widehat{HAE}\)

hay AE là tia phân giác của \(\widehat{HAC}\)(Đpcm)

24 tháng 4 2019

a/ Xét tam giác ABH vuông tại H và tam giác AHC vuông tại H

. AB = AC ( tam giác ABC cân tại A )

. AH là cạnh chung

Suy ra tam giác ABH = tam giác AHC ( cạnh huyền - cạnh góc vuông )

Mà H thuộc BC

Suy ra H là trung điểm của BC

Suy ra BH = BC ( 2 cạnh tương ứng )

b/ Xét tam giác AHC vuông tại H có 

AC2 = AH2 + HC2 ( định lý pytago )

132 = 122 + HC2

169= 144 + HC2

HC2 = 169 -144

HC2 = 25

HC =\(\sqrt{25}\)

HC = 5 cm

=> Bc =HC .2 =10cm

Vậy BC = 10cm

c/ Xét tam giác AEM vuông tại M và tam giác EMB vuông tại M

. EM là cạnh chung

.AM = MB ( M là trung điểm )

=> Tam giác AEM = tam giác EMB ( cạnh huyền - cạnh góc vuông )

=> A1 = B1 ( 2 góc ở đáy )

=> AE =BE  ( 2 cạnh tương ứng )

=> Tam giác AEB cân tại E

d/ Ta có:

. A1 = A2 ( tam giác ABH = tam giác ACH )

. B1 = A ( tam giác ABE cân )

=> B1 = A1

Xét tam giác BDE và tam giác AFE có

. BD = AF ( gt )

. BE = AE ( tam giác ABE cân tại E )

.B = A1 ( cmt )

=> Tam giác DEB = tam giác AFE( c.g.c )

=> ED = EF ( 2 cạnh tương ứng )

Tam giác DEF có

DE + EF > DF ( bất đẳng thức tam giác)

Mà DE = EF ( cmt )

=> EF + EF > DF

=> 2EF > DF

=> EF > \(\frac{DF}{2}\)

10 tháng 7 2019

A B C D H E F M N

CM: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc t/ứng)

=> AD là tia p/giác của \(\widehat{BAC}\)

c) Xét t/giác MEB = t/giác NFC

có: \(\widehat{BEM}=\widehat{CFN}=90^0\) (gt)

  BM = CN (gt)

    \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)

T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)

Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\)

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 \(\widehat{AEH}=\widehat{AFH}=90^0\) (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> \(\widehat{EAH}=\widehat{FAH}\) (2 góc t/ứng)

=> AH là tia p/giác của \(\widehat{A}\)

Mà AD cũng là tia p/giác của \(\widehat{A}\)

=> AH \(\equiv\) AD 

=> A, D, H thẳng hàng

5 tháng 5 2023

M: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 �^=�^B=C (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  �^=�^B=C (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> ���^=���^BAD=CAD (2 góc t/ứng)

=> AD là tia p/giác của ���^BAC

c) Xét t/giác MEB = t/giác NFC

có: ���^=���^=900BEM=CFN=900 (gt)

  BM = CN (gt)

    �^=�^B=C (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> ���^=���^=1800−�^2AEF=AFE=21800A (1)

T/giác ABC cân tại A
=> �^=�^=1800−�^2B=C=21800A (2)

Từ (1) và (2) => ���^=�^AEF=B

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 ���^=���^=900AEH=AFH=900 (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> ���^=���^EAH=FAH (2 góc t/ứng)

=> AH là tia p/giác của �^A

Mà AD cũng là tia p/giác của �^A

=> AH  AD 

=> A, D, H thẳng hàng

29 tháng 5 2017

ĐỀ QUẬN BÌNH TÂN NĂM 2016 - 2017

a) Xét \(\Delta ABH\)và \(\Delta ACH\)ta có:

AH là cạnh chung

AB = AC ( \(\Delta ABC\)cân tại A)

BH = CH ( H là trung điểm của BC)

\(\Rightarrow\Delta ABH=\Delta ACH\left(c-c-c\right)\)

Xét \(\Delta ABC\)cân tại A ta có:

AH là đường trung tuyến ( H là trung điểm của BC)

\(\Rightarrow\)AH là đường cao của \(\Delta ABC\)

\(\Rightarrow AH⊥BC\)tại H.

b) Xét \(\Delta BDH\)vuông tại D và \(\Delta CEH\)vuông tại E ta có:

BH = CH ( H là trung điểm của BC)

\(\widehat{DBH}=\widehat{ECH}\)(\(\Delta ABC\)cân tại A)

\(\Rightarrow\Delta BDH=\Delta CEH\left(ch-gn\right)\)

\(\Rightarrow\)BD = CE ( 2 cạnh tương ứng)

c) Ta có:

AB = AC (\(\Delta ABC\)cân tại A)

BD = CE ( cmt)

\(\Rightarrow AB-BD=AC-CE\)

\(\Rightarrow AD=AE\)

\(\Rightarrow\Delta ADE\)cân tại A

\(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{DAE}}{2}\)

Mà \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)

Nên \(\widehat{ADE}=\widehat{ABC}\)

Mặt khác 2 góc này nằm ở vị trí đồng vị

\(\Rightarrow\)DE // BC.

d) Nối A với I.

Ta có: 

\(\hept{\begin{cases}HE=HM+ME\left(M\in HE\right)\\HM=EN\left(gt\right)\end{cases}}\)

\(\Rightarrow HE=EN+ME\)

\(\Rightarrow HE=MN\)

Xét \(\Delta AEN\)vuông tại E ta có:

\(\hept{\begin{cases}AN^2=AE^2+EN^2\left(Pitago\right)\\AE=AD\left(cmt\right)\\EN=HM\left(gt\right)\end{cases}}\)

\(\Rightarrow AN^2=AD^2+HM^2\)

\(\Rightarrow AN^2=AD^2+HI^2-MI^2\)

\(\Rightarrow AN^2=AD^2+HI^2-\left(NI^2-MN^2\right)\)

\(\Rightarrow AN^2=AD^2+HI^2-NI^2+HD^2\)

\(\Rightarrow AN^2=AD^2+HD^2+HI^2-NI^2\)

\(\Rightarrow AN^2=AH^2+HI^2-NI^2\)

\(\Rightarrow AN^2=AI^2-NI^2\)

\(\Rightarrow AI^2=AN^2+NI^2\)

\(\Rightarrow\Delta ANI\)vuông tại N ( Định lý Pitago đảo)

\(\Rightarrow IN⊥AN\)tại N.