Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có gì sai sót mong bạn góp ý
Trên AC lấy điểm H sao cho AH=AB
Ta có:
AH=AC-CH
Mà AH=Ab
=>AB+AC-CH
=>CH=AC-AB(1)
Xét tam giác AHE và tam giác ABE có
AH=AB(gt)
HAE=BAE
AE chung
=> Tam giác AHE=tam giác ABE(c-g-c)
=>EH=EB(2 cạnh tương ứng)
Xét tam giác EHC có
HC>EC-EH
Mà EB=EH
=>HC>EC-EB(2)
Từ (1) và (2)=>AC-AB>EC-EB
a) Xét tam giác ABD và tam giác AHD có:
AB = AH ( gt )
^BAD = ^CAD ( Do AD phân giác )
AD chung
=> Tam giác ABD = tam giác AHD ( c.g.c )
=> ^ABD = ^AHB ( hai góc tương ứng )
b) Xét tam giác AHE và tam giác ABC có:
AB = AH ( gt )
^ABC chung
^ABD = ^AHD ( cmt )
=> Tam giác AHE = tam giác ABC ( g.c.g )
2.Trên tia AB lấy M sao cho AM = AC mà AC < AB nên AM < AB => M nằm giữa A,B
ΔAEC,ΔAEMcó AE chung ; AC = AM ;^CAE=^MAE(AE là phân giác góc BAC)
⇒ΔAEC=ΔAEM(c.g.c)=> EC = EM
=> EB - EC = EB - EM < MB (bđt tam giác đối vớiΔEMB) mà AB - AC = AB - AM = MB
Vậy AB - AC > EB - EC
Trên AC lấy AK=AB thì K nằm giữa A và C, do đó
KC=AC-AB (1)
Ta có ∆AEB=∆AEK (c.g.c). Suy ra EB=EK. Xét ∆EKC ta có
KC>EC-EK nên KC>EC-EB (2)
Từ (1) và (2) suy ra
AC-AB>EC-EB
*Chú ý: Sẽ sai lầm nếu từ EC<AC+AE và EB<AB+AE suy ra EC-EB<AC-AB, vì ko được trừ từng vế hai bất đẳng thức cùng chiều.
câu a là c/m 2 tam giác bằng nhau nhé: tg AED và tg ACD từ đó suy là các ggo1c và cạnh tương ứng bằng nhau nha!
câu b là: vì tg AEC là tg cân( AE=EC) , ad là tia phân giác mà I thuộc Ad nên Ai cũng là tia phân giác góc EAC suy ra AI là đường trung trực suy ra I là trung điểm Ec và Ai vuông góc EC
a: Xét ΔABF và ΔADF có
AB=AD
\(\widehat{BAF}=\widehat{DAF}\)
AF chung
Do đó: ΔABF=ΔADF
b: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
Suy ra: EB=ED
c: Xét ΔBEG và ΔDEC có
BE=DE
\(\widehat{BEG}=\widehat{DEC}\)
EG=EC
Do đó: ΔBEG=ΔDEC
Suy ra: \(\widehat{EBG}=\widehat{EDC}\)
=>\(\widehat{EBG}+\widehat{ADE}=180^0\)
=>\(\widehat{EBG}+\widehat{EBA}=180^0\)
=>A,B,G thẳng hàng
ban cung hoc truong trung hoc co so thanh my ha tai phan
Hình tự vẽ nhá
Lời giải:
trên tia AB lấy điểm N sao cho AN=AC. Do AB>AC nên N nằm giữa A và B
Vậy AB - AC = AB - AN = BN
dễ dàng chứng minh đc tam giác AEN = tam giác AEC (cgc), suy ra EN = EC (2 cạnh tương ứng)
Xét tam giác EBN có: BN > EB - EN (hệ quả của bất đẳng thức trong tam giác)
mà BN = AB - AC ( đã chứng minh)
=> AB - AC > EB - EN
lại có EN = EC (đã chứng minh), suy ra AB - AC > EB - EC ( đpcm)
ko tránh khỏi thiếu sót, nếu sai ai đó sửa lại nhé. Thắc mắc gì cứ hỏi
_Hết_