K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

Gọi J là trung điểm BC. Khi đó AJ là trung tuyến. Vậy thì AG = 2GJ.     (1)

Xét tứ giác BIKC có BI cùng CK cùng song song với AG nên BI // CK hay BIKC là hình thang.

Xét hình thang BIKC có :

J là trung điểm BC

GJ // BI // KC 

Suy ra GJ là đường trung bình hình thang BIKC.

Từ đó ta có: \(BI+CK=2GJ\)                    (2)

Từ (1) và (2) suy ra \(BI+KC=AG\)

6 tháng 1 2016

hình tự vẽ nha bn! gọi K,I,P lần lượt là tđ của AB,AC,BC

ta có AG/AP=2/3=> S AMG/ABP=2/3=> AM/AB=2/3

ta có AM/AB=2/3,AG/AP=2/3=> MG//BP (định lý talet đảo)

khi MG//BP=> AB/AM=AP/AG (1)

khi GN//PC (MG//BP) => AP/AG=AC/AN (2)

từ (1),(2)=> AB/AM+AC/AN=2AP/AG=2.3/2=3

5 tháng 8 2017

giả thiết câu sau bị sai

5 tháng 8 2017

uk thế giúp mik câu a đi để mik KT lại giả thiết

16 tháng 1

 

Xét 2 tam giác AMG và ABH ta có:

\(\widehat{BAH}\) chung 

\(\widehat{AMG}=\widehat{ABH}\) (cặp góc đồng vị do BH//MG) 

\(\Rightarrow\Delta AMG\sim\Delta ABH\left(g.g\right)\) 

\(\Rightarrow\dfrac{AB}{AM}=\dfrac{AH}{AG}\) (1) 

Xét 2 tam giác ANG và ACK có:

\(\widehat{CAK}\) chung 

\(\widehat{ANG}=\widehat{ACK}\) (cặp góc đồng vị do CK//GN) 

\(\Rightarrow\Delta ANG\sim\Delta ACK\left(g.g\right)\)

\(\Rightarrow\dfrac{AC}{AN}=\dfrac{AK}{AG}\) (2) 

Xét hai tam giác BOH và COK ta có: 

\(\widehat{BOH}=\widehat{COK}\) (đối đỉnh) 

\(BO=CO\) (AO là đường trung tuyến nên O là trung điểm của BC) 

\(\widehat{HBO}=\widehat{KCO}\) (so le trong vì BH//MN và CK//MN ⇒ BH//CK) 

\(\Rightarrow\Delta BOH=\Delta COK\left(g.c.g\right)\) 

\(\Rightarrow HO=OK\) (hai cạnh t.ứng) 

\(\Rightarrow HK=2HO\)

Ta lấy (1) + (2) \(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{AH+AK}{AG}=\dfrac{AH+AH+HK}{AG}=\dfrac{2AH+HK}{AG}\) 

\(=\dfrac{2AH+2HO}{AG}=\dfrac{2\left(AH+HO\right)}{AG}=\dfrac{2AO}{AG}\) 

Mà G là trọng tâm của tam giác ABC \(\Rightarrow AO=\dfrac{3}{2}AG\) 

\(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{2\cdot\dfrac{3}{2}AG}{AG}=2\cdot\dfrac{3}{2}=3\left(đpcm\right)\)  

a: XétΔABH và ΔACH có

AB=AC
\(\widehat{BAH}=\widehat{CAH}\)

AH chung

Do đó:ΔABH=ΔACH

b: Xét ΔABC có

AH là đường trung tuyến

BD là đường trung tuyến

AH cắt BD tại G

Do đó: G là trọng tâm của ΔABC

c: \(AH=\sqrt{15^2-9^2}=12\left(cm\right)\)

AG=2/3AH=8(cm)

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

=>AC=20(cm)