Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong \(\Delta ABC\)có: \(AB=AC\) (gt)
\(\Rightarrow\Delta ABC\)cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(2 góc đáy)
Mà \(\widehat{ABC}+\widehat{ABM}=180^o\)
\(\widehat{ACB}+\widehat{ACN}=180^o\)
Nên \(\widehat{ABM}=\widehat{ACN}\)
Xét \(\Delta ABM\)và \(\Delta ACN\)có:
\(AB=AC\)(gt)
\(\widehat{ABM}=\widehat{ACN}\)(chứng minh trên)
\(MB=NC\)(gt)
Do đó \(\Delta ABM=\Delta ACN\left(c.g.c\right)\)
\(\Rightarrow AM=AN\)
a: Xét ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
=>ΔABH=ΔACH
b: ΔABC cân tại A có AH là đường trung tuyến
nên AH là phân giác của góc BAC và AH vuông góc BC
Xét ΔAME và ΔANE có
AM=AN
góc MAE=góc NAE
AE chung
=>ΔAME=ΔANE
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC