K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 1

Lời giải:
a. Tam giác ABM không cân bạn nhé. Tam giác ABD mới là tam giác cân.

Gọi $K$ là giao của $AM$ và $BD$

Xét tam giác $ABK$ và $ADK$ có:

$\widehat{BAK}=\widehat{DAK}$ (do $AK$ là phân giác $\widehat{BAC}$)

$\widehat{AKB}=\widehat{AKD}=90^0$

$AK$ chung

$\Rightarrow \triangle ABK=\triangle ADK$ (g.c.g)

$\Rightarrow AB=AD$

$\Rightarrow ABD$ là tam giác cân tại $A$

b. Xét tam giác $ABM$ và $ADM$ có:

$AM$ chung

$\widehat{BAM}=\widehat{DAM}$ (do $AM$ là phân giác $\widehat{BAC}$)

$AB=AD$ (cmt)

$\Rightarrow \triangle ABM=\triangle ADM$ (c.g.c)

c. Đề thiếu. Bạn xem lại.

 

AH
Akai Haruma
Giáo viên
18 tháng 1

Hình vẽ:

27 tháng 7 2021

Bài làm hoàn chỉnh đây nhé bn

undefined

27 tháng 7 2021

Xem lại đề câu c nhé bn

undefined

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0

https://h.vn/hoi-dap/question/168197.html

tham khảo nhé bạn

11 tháng 12 2018

a) Xét △ABM và △ACM, có:

+ AB = AC

+ Góc BAM = góc CAM (AM là đường phân giác của △ABC)

+ AM cạnh chung

Vậy △ABM = △ACM (c-g-c)

b) Vì △ABM = △ACM 

=> Góc AMB = góc AMC

Ta có: góc AMB + AMC = 1800

          => 1800 = 2AMB 

                AMB = \(\dfrac{180^0}{2}\) = 900

Vì AMB = AMC = 900

Suy ra: AM ⊥ BC

Vậy AM ⊥ BC

Câu c không biết làm nha bạn.

a Xét ΔABM và ΔADM có 

AB=AD

AM chung

BM=DM

Do đó: ΔABM=ΔADM

b: Ta có: ΔABD cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

Suy ra: KB=KD