K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2021

a/

∆ABC vuông tại A, AH, vuông góc BC

=> AB.AH = HB.AC

=> AB = 15Ta có: BC^2 = AB^2 + AC^2=> BC = 25=> HB = BC - BH = 25-9 = 16

 

a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AH^2+BH^2=AB^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\)

hay AB=15(cm)

Vậy: AB=15cm

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+16^2=400\)

\(\Leftrightarrow AC=\sqrt{400}=20cm\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=13^2-12^2=25\)

\(\Leftrightarrow BH=\sqrt{25}=5cm\)

Ta có: BH+CH=BC(H nằm giữa B và C)

\(\Leftrightarrow BC=5+16=21\left(cm\right)\)

Vậy: AB=20cm; BC=21cm

26 tháng 2 2021

thank you so muchhhh

 

NM
19 tháng 2 2022

a. ta có : tam giác AHB vuông tại H nên

\(AH^2=AB^2-BH^2=12^2-7,2^2=9,6^2\) Vậy AH =9,6cm

b. Ta có : ABC phải tam giác vuông vì \(AB^2=BH.BC\)

13 tháng 3 2017

TA CÓ TAM GIÁC ABH VUÔNG TẠI H ;A/D ĐỊNH LÝ PYTAGO TA CÓ

\(AB^2=AH^2+BH^2=>BH^2=AB^2-AH^2\)

=>\(BH^2=15^2-12^2=>BH^2=81=>BH=9'\left(cm\right)\)

=>\(BC=9+16=25\left(cm\right)\)

ta có \(\Delta AHC\) VUÔNG TẠI H A/D ĐỊNHLÝ PYTAGO TA CÓ

\(AC^2=AH^2+HC^2=>AC^2=12^2+16^2\)

=>\(AC^2=400=>AC=20\left(cm\right)\)

26 tháng 2 2021

A B C H

a) Xét t/giác ABH vuông tại H , ta có: AB2 = AH2 + BH2 (Pi - ta - go)

=> AB2 = 122 + 52 = 169 => AB = 13 (cm)

Ta có: HC + BH = BC => HC = BC - BH = 14 - 5 = 9 (cm)

Xét t/giác AHC vuông tại H, có: AC2 = HC2 + AH2 (Pi - ta - go)

=> AC2  = 92 +  122 = 225 => AC = 15 (cm)

 

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=12^2+5^2=169\)

hay AB=13(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=14-5=9(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+9^2=225\)

hay AC=15(cm)

Vậy: AB=13cm; AC=15cm

20 tháng 1 2022

a, Ta có : 4AB = 3CA => AB /3 = AC /4 => AB^2/9 = AC^2/16

Theo tính chất dãy tỉ số bằng nhau ta có : 

\(\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{BC^2}{25}=\dfrac{400}{25}=16\Rightarrow AB=12cm;AC=16cm\)

b, Ta có : BH + CH = BC = 25 cm 

Theo định lí Pytago tam giác ABC vuông tại A

\(AB=\sqrt{BC^2-AC^2}=15cm\)

Theo định lí Pytago tam giác AHB vuông tại H

\(AH=\sqrt{AB^2-HB^2}=12cm\)