K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(BC^2=10^2-6^2=64\)

=>\(BC=\sqrt{64}=8\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{6}=\dfrac{CD}{10}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{5}\)

mà BD+CD=BC=8cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{BD+CD}{3+5}=\dfrac{8}{8}=1\)

=>\(BD=3\cdot1=3\left(cm\right);CD=5\cdot1=5\left(cm\right)\)

16 tháng 6 2017

xem lại đề

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)

Do đó: AD=3cm; CD=5cm

b: Xét ΔABC vuong tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

c: Xét ΔABI và ΔCBD có 

\(\widehat{ABI}=\widehat{CBD}\)

\(\widehat{BAI}=\widehat{BCD}\)

Do đó: ΔABI\(\sim\)ΔCBD

30 tháng 9 2017

Xét tam giác AIB và tam giác CIE, ta có:

\(AB=CE\)( gt )

\(IB=IC\)( I thuộc trung trực của BE )

+\(AI=CI\)( I thuộc trung trực của AC )

\(\Rightarrow\)Tam giác AIB \(=\)Tam giác CIE ( c.c.c )

Ta có: Tam giác AIB \(=\)Tam giác CIE ( CMT )

\(\Rightarrow\)Góc IAB \(=\)Góc ICE ( 2 góc tương ứng ) ( 1 )

Lại có: AI \(=\)IC ( CMT )

\(\Rightarrow\)Tam giác AIC cân tại I ( Định nghĩa tam giác cân )

\(\Rightarrow\)Góc IAC \(=\)Góc ACI ( Tính chất tam giác cân ) ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)Góc IAB \(=\)Góc IAC

Hay AI là là phân giác của góc BAC

b: góc ADE+góc ABD=90 độ

góc AED=góc HEB=90 độ-góc DBC

mà góc ABD=góc DBC

nên góc ADE=góc AED

=>AD=AE

a: BD là phân giác

=>DA/AB=DC/BC

=>DA*BC=DC*AB

=>DC*AB=AE*BC

3 tháng 5 2019

a) Xét tam giác HBA và tam giác ABC có

góc H = góc A (=90 độ)

góc ABC chung

suy ra tam giác HBA đồng dạng với tam giác ABC

b) Áp dụng định lyd Pi ta go vào tam giác vuông ABC có

BC^2= AB^2+AC^2

BC^2=12^2+16^2

BC^2 = 400

BC=căn 400 = 20 cm

+ Ta có tam HBA đồng dạng vs tam giác ABC (cmt)

suy ra HA/AC=BA/BC(t/c 2 tam giác đồng dạng)

suy ra HA/16=12/20

SUY RA HA=(16*12)/20 =9,6cm

c) ta có DE là tia phân giac

suy ra AE/EB=AD/BD 1

VÌ DF là tia p/g

suy ra FC/FADC/AD 2

TỪ 1,2 suy ra EA/EB *DB/DC*EC/FA

suy ra EA/EB*DB/DC*FC/FA =1(đfcm)

3 tháng 5 2019
https://i.imgur.com/uPsEWVL.png
27 tháng 2 2018

a. Xét tam giác ABC có:

AC2 + AB2 = 122 +92 = 144 + 81 =225 (cm)

BC2 = 152 = 225 (cm)

Suy ra: AC2 + AB2 = BC2

=> Tam giác ABC vuông tại A

b.

Ta có AD là phân giác của góc B

=> \(\dfrac{DA}{DC}=\dfrac{BA}{BC}\) ( Tính chất đường phân giác trong tam giác)

\(\Leftrightarrow\dfrac{DA}{DC}=\dfrac{9}{15}=\dfrac{3}{5}\)

\(\Rightarrow\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{3}{2}\)

Suy ra: \(\dfrac{DA}{3}=\dfrac{3}{2}\Rightarrow DA=\dfrac{3.3}{2}=4,5\)

\(\dfrac{DC}{5}=\dfrac{3}{2}\Rightarrow DC=\dfrac{5.3}{2}=7,5\)

Vậy: DA = 4,5 (cm) và DC = 7,5(cm)

Xét ΔABC có 

BE là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{EA}{AB}=\dfrac{EC}{BC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{EA}{8}=\dfrac{EC}{10}\)

mà EA+EC=AC(E nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{EA}{8}=\dfrac{EC}{10}=\dfrac{EA+EC}{8+10}=\dfrac{AC}{18}=\dfrac{9}{18}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{EA}{8}=\dfrac{1}{2}\\\dfrac{EC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}EA=4\left(cm\right)\\EC=5\left(cm\right)\end{matrix}\right.\)

Vậy: EA=4cm; EC=5cm