Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý phân giác:
\(\dfrac{DB}{AB}=\dfrac{DC}{AC}\Rightarrow\dfrac{3}{4}=\dfrac{DC}{7}\Rightarrow DC=\dfrac{21}{4}\left(cm\right)\)
\(\Rightarrow BC=DB+DC=\dfrac{33}{4}=8,25\left(cm\right)\)
a:
Sửa đề tam giác DEC
Xet ΔABC vuông tại A và ΔDEC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDEC
b: \(BC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)
\(AD=\dfrac{2\cdot3\cdot5}{3+5}\cdot cos45=\dfrac{15\sqrt{2}}{8}\left(cm\right)\)
AD là phân giác
=>BD/AB=CD/AC
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{\sqrt{34}}{8}\)
=>\(BD=\dfrac{3\sqrt{34}}{8}\left(cm\right)\)
vi AD là tia phân giác góc A của tam giác ABC nên:
BD/AB = DC/AC
hay BD/5 = DC/7 = (BD + DC)/5+7 = 1/2
do đó DB = 5/2
a) Theo tính chất đường phân giác ta có:
\(\frac{AD}{DC}=\frac{BA}{BC}\) => \(\frac{AD}{AD+DC}=\frac{BA}{BA+BC}\) (tính chất dãy tỉ số bằng nhau)
Suy ra: \(\frac{AD}{AC}=\frac{BA}{BA+BC}\) => \(\frac{AD}{6}=\frac{5}{5+7}\) => AD = 2,5.
b) Xét tam giác ABD có AO là phân giác. Suy ra: \(\frac{OB}{OD}=\frac{AB}{AD}=\frac{5}{2,5}=2\)
Xét tam giác BDM có: \(\frac{OB}{OD}=2\), \(\frac{GB}{GM}=2\) (theo tính chất trọng tâm).
Suy ra \(\frac{OB}{OD}=\frac{GB}{GM}\) (cùng bằng 2) => OG // DM (theo định lý Ta-let đảo)
Vậy OG//AC