K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2018

a) Làm theo bạn Doan Thanh phuong  nhé!

b) Ta có:  A = 90o => Tam giác ABC vuông tại a.

Áp dụng định lý Pitago. Ta có:

\(AB^2+AC^2=BC^2\Leftrightarrow3^2+4^2=9+16=25\)

\(\Rightarrow BC^2=25\). Mà \(25=5^2\Rightarrow BC=5\) cm

18 tháng 2 2018

a) Xét tam giác ABC và tam giác A'B'C' có :

      \(\widehat{A}=\widehat{A'}\left(gt\right)\)

      AB = A'B' ( gt )

       AC = A'C' ( gt )

Suy ra tam giác ABC = tam giác A'B'C' ( c - g - c )

b) Ta có tam giác ABC vuông tại A ( gt )

=> AB2 + AC= BC2 ( định lý Py-ta-go )

hay 32  +  42   = BC2

      BC2          = 32 + 42 = 9 + 16 = 25

=> BC = 5

29 tháng 6 2018

Hai tam giác cs chu vi = nhau à bn?

Sửa đề: cắt AB tại D.

a) Sửa đề: ΔACD=ΔECD

Xét ΔACD vuông tại A và ΔECD vuông tại E có

CD chung

\(\widehat{ACD}=\widehat{ECD}\)(CD là tia phân giác của \(\widehat{ACE}\))

Do đó: ΔACD=ΔECD(Cạnh huyền-góc nhọn)

b) Ta có: ΔACD=ΔECD(cmt)

nên DA=DE(Hai cạnh tương ứng)

Xét ΔDAE có DA=DE(cmt)

nên ΔDAE cân tại D(Định nghĩa tam giác cân)

 

8 tháng 2 2022

a. Áp dụng định lý pitago, ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)

\(C_{ABC}=6+8+10=24cm\)

b. xét tam giác vuông ABD và tam giác vuông BDM, có:

B : góc chung

AD: cạnh chung

Vậy  tam giác vuông ABD = tam giác vuông BDM ( cạnh huyền - góc nhọn )

 

8 tháng 2 2022

có vẽ hình nha mọi người

 

17 tháng 1 2017

Bổ sung đề: \(\widehat{B}=30^0\)

a) Xét ΔABC vuông tại A có \(\widehat{B}=30^0\)(gt)

mà cạnh đối diện với \(\widehat{B}\) là cạnh AC

nên \(AC=\dfrac{1}{2}\cdot BC\)(Định lí tam giác vuông)

\(\Leftrightarrow AC=\dfrac{1}{2}\cdot7=\dfrac{7}{2}cm\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=7^2-\left(\dfrac{7}{2}\right)^2=\dfrac{147}{4}\)

hay \(AB=\dfrac{7\sqrt{3}}{2}cm\)

Vậy: AC=3,5cm; \(AB=\dfrac{7\sqrt{3}}{2}cm\)