Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ A dựng đường cao AH ( H thuộc BC ), kẻ đường thẳng A vuông góc với AC và cắt BC tại F
\(\Delta ABH\) có \(\sin60^0=\frac{AH}{AB}=\frac{\sqrt{3}}{2}\)\(\Leftrightarrow\)\(AH=\frac{\sqrt{3}}{2}\)
\(\Delta ACH\) có \(\tan15^0=\frac{AH}{HC}=2-\sqrt{3}\)\(\Leftrightarrow\)\(HC=\frac{AH}{2-\sqrt{3}}=\frac{\frac{\sqrt{3}}{2}}{2-\sqrt{3}}=\frac{3+2\sqrt{3}}{2}\)
Py-ta-go \(\Delta ACH\) có \(AC^2=AH^2+HC^2=\frac{3}{4}+\frac{21+12\sqrt{3}}{4}=6+3\sqrt{3}\)
\(\Rightarrow\)\(\frac{1}{AC^2}=\frac{1}{6+3\sqrt{3}}\) (1)
\(\Delta ABH\) có \(\tan60^0=\frac{AH}{BH}=\sqrt{3}\)\(\Leftrightarrow\)\(BH=\frac{AH}{\sqrt{3}}=\frac{\frac{\sqrt{3}}{2}}{\sqrt{3}}=\frac{1}{2}\)
Mà \(BC=BH+HC=\frac{1}{2}+\frac{3+2\sqrt{3}}{2}=2+\sqrt{3}\)
Ta-let \(\Delta ABC\) có \(\frac{AD}{AC}=\frac{BE}{BC}\)\(\Leftrightarrow\)\(AD=\frac{BE}{BC}.AC\)\(\Leftrightarrow\)\(AD^2=\frac{BE^2}{BC^2}.AC^2\)
\(\Leftrightarrow\)\(AD^2=\frac{1}{7+4\sqrt{3}}.\left(6+3\sqrt{3}\right)=6-3\sqrt{3}\)\(\Leftrightarrow\)\(\frac{1}{AD^2}=\frac{1}{6-3\sqrt{3}}\) (2)
Từ (1) và (2) suy ra \(\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{6+3\sqrt{3}}+\frac{1}{6-3\sqrt{3}}=\frac{4}{3}\) ( đpcm )
ED//AB thì s \(D\in AB\) đc? Đề sai kìa