K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Xét tứ giác AMCD có 

I là trung điểm của AC

I là trung điểm của MD

Do đó: AMCD là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCD là hình chữ nhật

hay \(\widehat{ADC}=90^0\)

12 tháng 12 2021

a: Xét ΔCIA và ΔDIB có 

IC=ID

\(\widehat{CIA}=\widehat{DIB}\)

IA=IB

Do đó: ΔCIA=ΔDIB

12 tháng 12 2021

sao có mỗi phần a vậy bạn

 

a) Xét tam giác ABC có:

BC>AC>AB (vì 5>4>3)

Suy ra: Góc A>góc B>góc C (quan hệ giữa góc và cạnh đối diện)

b) Xét tam giác BCD có:

A là trung điểm của BD (gt)

I là trung điểm của BC(gt)

A cắt I tại M

Suy ra M là trọng tâm của tâm giác CBD (Tính chất)

 

 

 

 

a) Xét tam giác ABC có:

BC>AC>AB (vì 5>4>3)

Suy ra: Góc A>góc B>góc C (quan hệ giữa góc và cạnh đối diện)

b) Xét tam giác BCD có:

A là trung điểm của BD (gt)

I là trung điểm của BC(gt)

A cắt I tại M

Suy ra M là trọng tâm của tâm giác CBD (Tính chất)

 

3 tháng 1 2017

a/ Xét t/g AMB và t/g AMC ta có:

AM: Cạnh chung

AB = AC (gt)

MB = MC (gt)

=> t/g AMB = t/g AMC (c.c.c)(đpcm)

b/+) Vì t/g AMB = t/g AMC (ý a)

=> \(\widehat{BAM}=\widehat{CAM}\)

=> AM là tia phân giác của \(\widehat{BAC}\left(đpcm\right)\)

+) Vì t/g AMB = t/g AMC (ý a)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)

=> \(\widehat{AMB}=\widehat{AMC}=\frac{180^o}{2}=90^o\)

=> AM \(\perp\) BC (đpcm)

c/ +) Xét t/g AID và t/g CIM có:

AI = CI (gt)

\(\widehat{AID}=\widehat{CIM}\) (đối đỉnh)

ID = IM (gt)

=> t/g AID = t/g CIM (c.g.c)

=> \(\widehat{ADI}=\widehat{CMI}\) (2 góc tương ứng)(1)

+) Chứng ming tương tự ta có:

t/g AIM = t/g CID (c.g.c)

=> \(\widehat{AMI}=\widehat{CDI}\) (2 góc tương ứng)(2)

Từ (1) và (2)

=> \(\widehat{ADI}+\widehat{CDI}=\widehat{CMI}+\widehat{AMI}\)

hay \(\widehat{ADC}=\widehat{AMC}=90^o\)

Vậy \(\widehat{ADC}=90^o\)

3 tháng 1 2017

a+b) Xét t/g AMB và t/g AMC có:

AB = AC (gt)

AM là cạnh chung

MB = MC (gt)

Do đó, t/g AMB = t/g AMC (c.c.c) (đpcm)

=> BAM = CAM (2 góc tương ứng) => AM là phân giác BAC (đpcm)

t/g AMB = t/g AMC (cmt) => AMB = AMC (2 góc tương ứng)

Mà AMB + AMC = 180o ( kề bù)

=> AMB = AMC = 90o

=> AM _|_ BC (đpcm)

c) Xét t/g AID và t/g CIM có:

AI = CI (gt)

AID = CIM ( đối đỉnh)

ID = IM (gt)

Do đó, t/g AID = t/g CIM (c.g.c)

=> AD = CM (2 cạnh tương ứng)

IAD = ICM (2 góc tương ứng)

T/g DAC = t/g MCA (c.g.c)

=> ADC = CMA = 90o (2 góc tương ứng)

29 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

29 tháng 12 2021

bạn biết làm câu c ko mình không biết làm câu c 

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên MCI^=NCI^(hai góc tương ứng)

hay BCA^=KCA^

Xét ΔBAC vuông tại A và ΔKAC vuông tại A có 

AC chung

BCA^=KCA^(cmt)

Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)

⇒CB=CK(hai cạnh tương ứng)

Ta có: MI⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)

hay MN//KB

Xét ΔCKB có

M là trung điểm của CB(gt)

MN//KB(cmt)

Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)

c) Ta có: MA=ME(gt)

mà A,M,E thẳng hàng

nên M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(cmt)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)

d) Ta có: ABEC là hình bình hành(cmt)

nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)

mà AB=AK(ΔCBA=ΔCKA)

nên EC=AK

Ta có: AB//EC(Cmt)

nên CE//KA

Xét tứ giác AECK có 

CE//AK(cmt)

CE=AK(cmt)

Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét ΔCAB có 

M là trung điểm của BC(gt)

MI//AB(cmt)

Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

Ta có: AECK là hình bình hành(cmt)

nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của AC(cmt)

nên I là trung điểm của EK

hay E,I,K thẳng hàng(đpcm)

chúc bạn học tốt nha cái này mình cũng không chắc là đúng đó bạn :)

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên \(\widehat{MCI}=\widehat{NCI}\)(hai góc tương ứng)

hay \(\widehat{BCA}=\widehat{KCA}\)

Xét ΔCAB vuông tại A và ΔCAK vuông tại A có 

CA chung

\(\widehat{BCA}=\widehat{KCA}\)(cmt)

Do đó: ΔCAB=ΔCAK(Cạnh góc vuông-góc nhọn kề)

Suy ra: CA=CK(hai cạnh tương ứng)

Ta có: CN+NK=CK(N nằm giữa C và K)

CM+MB=CB(M nằm giữa C và B)

mà CK=CB(cmt)

và CN=CM(ΔCNI=ΔCMI)

nên NK=MB

mà \(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên \(NK=\dfrac{BC}{2}\)

mà BC=KC(cmt)

nên \(NK=\dfrac{CK}{2}\)

mà điểm N nằm giữa hai điểm C và K

nên N là trung điểm của CK(đpcm)

c) Xét ΔAMB và ΔEMC có

MA=ME(gt)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔEMC(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MEC}\)(hai góc tương ứng)

mà \(\widehat{MAB}\) và \(\widehat{MEC}\) là hai góc ở vị trí so le trong

nên AB//EC(Dấu hiệu nhận biết hai đường thẳng song song)

a: Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

IM=IN

Do đó: ΔIMC=ΔINC