Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
Xét tam giác BAD và tam giác EAD có :
AE=AB ( gt )
\(\widehat{BAD}=\widehat{AED}\) ( do AD là tia p/g của \(\widehat{A}\))
AD là cạnh chung
nên tam giác BAD = tam giác EAD
=> BD = ED ( hai cạnh tương ứng )
b ) cÓ : \(\widehat{DBA}+\widehat{DBK}=180^o\)( hai góc kề bù)
\(\widehat{DEA}+\widehat{DEC}=180^o\)( hai góc kề bù )
mà \(\widehat{DEA}=\widehat{DBA}\Rightarrow\widehat{DBK}=\widehat{DEC}\)
xÉT tam giác DBK và tam giác DEC có :
\(\widehat{DBK}=\widehat{DEC}\) ( cm trên )
BD = ED ( cm phần a )
\(\widehat{BDK}=\widehat{EDC}\)( hai góc đối đỉnh )
nên tam giác DBK = tam giác DEC ( g.c.g)
à phần a tam giác BAD = tam giác EAD ( c.g.c ) nhé!
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
b: Ta có: ΔABE=ΔADE
=>EB=ED
=>E nằm trên đường trung trực của BD(1)
Ta có: AB=AD
=>A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AE là đường trung trực của BD
=>AE\(\perp\)BD tại H và H là trung điểm của BD
c: Xét ΔEBM và ΔEDC có
EB=ED
\(\widehat{BEM}=\widehat{DEC}\)(hai góc đối đỉnh)
EM=EC
Do đó: ΔEBM=ΔEDC
=>\(\widehat{EBM}=\widehat{EDC}\) và BM=DC
Ta có: \(\widehat{EBM}=\widehat{EDC}\)
\(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)
\(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)
Do đó: \(\widehat{EBM}+\widehat{EBA}=180^0\)
=>A,B,M thẳng hàng
Ta có: AB+BM=AM
AD+DC=AC
mà AB=AD và BM=DC
nên AM=AC
=>A nằm trên đường trung trực của MC(1)
Ta có: EM=EC
=>E nằm trên đường trung trực của MC(2)
Từ (1) và (2) suy ra AE là đường trung trực của MC
=>AE\(\perp\)MC
mà AE\(\perp\)BD
nên BD//MC
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
b: ta có: ΔABE=ΔADE
=>EB=ED
=>E nằm trên đường trung trực của BD(1)
ta có: AB=AD
=>A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AE là đường trung trực của BD
=>AE\(\perp\)BD tại H và H là trung điểm của BD
c: Xét ΔBEM và ΔDEC có
EB=ED
\(\widehat{BEM}=\widehat{DEC}\)
EM=EC
Do đó: ΔBEM=ΔDEC
=>\(\widehat{EBM}=\widehat{EDC}\)
mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)
và \(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)
nên \(\widehat{ABE}+\widehat{MBE}=180^0\)
=>A,B,M thẳng hàng
Ta có: ΔEBM=ΔEDC
=>BM=DC
Xét ΔAMC có \(\dfrac{AB}{BM}=\dfrac{AD}{DC}\)
nên BD//MC
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b: Xét ΔDBH và ΔDEC có
góc DBH=góc DEC
DB=DE
góc BDH=góc EDC
Do đó: ΔDBH=ΔDEC
c: Ta có: ΔDBH=ΔDEC
nên góc DHB=góc DCE
d: Ta có: AH=AB+BH
AC=AE+EC
mà AB=AE; BH=EC
nên AH=AC
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: AD=ED
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
c: Ta có: ΔADF=ΔEDC
nên DF=DC và AF=EC
Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BC=BF
hay B nằm trên đường trung trực của CF(1)
Ta có: DF=DC
nên D nằm trên đường trung trực của CF(2)
Từ (1) và (2) suy ra BD\(\perp\)CF
b) Xét ΔABD và ΔAED có
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
AD chung
Do đó: ΔABD=ΔAED(c-g-c)
Suy ra: BD=ED(hai cạnh tương ứng)
trả lời thiếu nhé