K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB và ΔADE có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔADB=ΔADE

Suy ra: BD=ED

b: Ta có: ΔADB=ΔADE

nên \(\widehat{ABD}=\widehat{AED}\)

hay \(\widehat{DBK}=\widehat{DEC}\)

Xét ΔDBK và ΔDEC có 

\(\widehat{DBK}=\widehat{DEC}\)

DB=DE

\(\widehat{BDK}=\widehat{EDC}\)

Do đó: ΔDBK=ΔDEC

c: Ta có: AB+BK=AK

AE+EC=AC

mà AB=AE

và BK=EC

nên AK=AC

Xét ΔAKC có AK=AC

nên ΔAKC cân tại A

d: Ta có: ΔDBK=ΔDEC

nên DK=DC

Ta có: AK=AC

nên A nằm trên đường trung trực của CK(1)

Ta có: DK=DC

nên D nằm trên đường trung trực của CK(2)

Từ (1) và (2) suy ra AD là đường trung trực của CK

hay AD\(\perp\)CK

1) Xét ΔABD và ΔAED có 

AB=AE(gt)

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAD}\))

AD chung

Do đó: ΔABD=ΔAED(c-g-c)

Suy ra: BD=ED(hai cạnh tương ứng)

2) Ta có: ΔABD=ΔAED(cmt)

nên \(\widehat{ABD}=\widehat{AED}\)(hai góc tương ứng)

Ta có: \(\widehat{ABD}+\widehat{KBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)(cmt)

nên \(\widehat{KBD}=\widehat{CED}\)

Xét ΔDBK và ΔDEC có 

\(\widehat{KBD}=\widehat{CED}\)(cmt)

BD=ED(cmt)

\(\widehat{BDK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDBK=ΔDEC(g-c-g)

3) Ta có: ΔDBK=ΔDEC(cmt)

nên BK=EC(hai cạnh tương ứng)

Ta có: AB+BK=AK(B nằm giữa A và K)

AE+EC=AC(E nằm giữa A và C)

mà AB=AE(gt)

và BK=EC(cmt)

nên AK=AC

Xét ΔAKC có AK=AC(cmt)

nên ΔAKC cân tại A(Định nghĩa tam giác cân)

6 tháng 4 2018

cho mk hoi:cho h=6a-13/5a-17 tim gia tri lon nhat cua h

26 tháng 4 2021

mình chỉ cần hình thui ạ

 

5 tháng 1 2022

hình tự vẽ

a)Vì AD là tpg của ^BAC

=>^BAD = ^CAD = ^BAC/2

Xét tam giác ABD và tam giác AED có:

AD:cạnh chung

^BAD=^CAD(cmt)

AB=AE(gt)

=>tam giác ABD=tam giác AED (c.g.c)

=>BD=BE (cặp cạnh t.ư)

b)Vì tam giác ABD=tam giác AED(cmt)

=>^ABD=^AED (cặp góc t.ư)

Ta có:^ABD+^KBD=1800 (kề bù)

=>^KBD=1800-^ABD (1)

^AED+^CED=1800 (kề bù)

=>^CED=1800-^AED(2)

Từ (1);(2);có ^ABD=^AED(cmt)

=>^KBD=^CED

Xét tam giác DBK và tam giác DEC có:

BD=BE(cmt

^KBD=^CED(cmt)

^BDK=^EDC (2 góc đđ)

=>tam giác DBK=tam giác DEC (g.c.g)

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra: BD=ED

b: Xét ΔDBK và ΔDEC có 

\(\widehat{DBK}=\widehat{DEC}\)

BD=ED

\(\widehat{BDK}=\widehat{EDC}\)

Do đó: ΔDBK=ΔDEC

c: Ta có: ΔDBK=ΔDEC

nên BK=EC

Ta có: AB+BK=AK

AE+EC=AC

mà AB=AE

và BK=EC

nên AK=AC

hay ΔAKC cân tại A

13 tháng 5 2015

b/ Xét 2 TG ABC và TG AEK,ta có:
A chung

E=B (2 TG = nhau câu a)

AB=AE (gt)

=>TG ABC=TG AEK (g-c-g)

=>AK=AC (cặp cạnh tương ứng)

Ta có :AK=AB+AC

AC=AE+EC

Mà AC=Ak

AB=AE

=>BK=EC

Xét 2 TG DBK và TG DEC,ta có:

BK=EC(cmt)

Góc BDK = góc EDC (đối đỉnh)

BD=ED(câu a)

=>TG DBK=TG DEC (c-g-c)

c/Vì AK=AC (TG AKE=TG ACB) nên TG AKC cân tại A

 

4 tháng 5 2016

Cho tam giac ABC có AB < AC; AD là phân giác của goc A. Trên cạnh AC lấy điểm E sao  cho AB = AE.

 a. Chứng minh tam giac ABD = tam giac AED

 b. Trên tia AB lấy điểm F sao cho AF = AC. Chứng minh tam giac FBD = tam giac CED và DF = DC  

c. Chứng minh AD vuong goc voi CE  d. Chứng minh BE // CF.

( giup minh voi cac ban oi )

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra: DB=DE

b: Xét ΔDBK và ΔDEC có 

\(\widehat{DBK}=\widehat{DEC}\)

BD=ED

\(\widehat{BDK}=\widehat{EDC}\)

Do đó: ΔDBK=ΔDEC

c: Ta có: AB+BK=AK

AE+EC=AC

mà AB=AE

và BK=EC

nên AK=AC

hay ΔAKC cân tại A

d: Ta có: ΔAKC cân tại A

mà AD là phân giác

nên AD là đường cao