K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

Ta có hình vẽ:

A B C D M

a/ Xét tam giác AMB và tam giác CMD có:

BM = MC (GT)

góc AMB = góc CMD (đối đỉnh)

AM = MD (GT)

=> tam giác AMB = tam giác CMD (c.g.c)

=> AB = DC (2 cạnh tương ứng)

b/ Ta có: tam giác AMB = tam giác CMD (câu a)

=> góc BAM = góc MDC (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // DC (đpcm)

c/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

BM = MC (GT)

AM: chung

=> tam giác ABM = tam giác ACM (c.c.c)

=> góc AMB = góc AMC (2 góc tương ứng) (*)

Mà góc AMB = góc CMD (đối đỉnh) (**)

Từ (*),(**) = >góc AMC = góc CMD (1)

Ta có: AM = MD (GT) (2)

CM: cạnh chung (3)

Từ (1),(2),(3) => tam giác AMC = tam giác DMC

=> góc ACM = góc DCM (2 góc tương ứng)

=> CM là phân giác góc ACD

hay CB là phân giác góc ACD

15 tháng 12 2016

A B C D M 1 2

a) Xét ΔABM và ΔDCM có:

AM=DM(gt)

\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)

BM=CM(gt)

=> ΔABM=ΔDCM(c.g.c)

=> AB=DC

b) VÌ: ΔABM=ΔDCM(cmt)

=> \(\widehat{ABM}=\widehat{C_2}\) .Mà hai góc này ở vị trí sole trong

=> AB//DC

c)Vì: ΔABC có AB=AC(gt)

=> ΔABC cân tại A

=> \(\widehat{ABM}=\widehat{C_1}\)

Mà: \(\widehat{ABM}=\widehat{C_2}\left(cmt\right)\)

=> \(\widehat{C_1}=\widehat{C_2}\)

=> CB là tia phân giác của góc ACD

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: ΔAMB=ΔDMC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

XétΔCAD có

CM là đường cao

CM là đường trung tuyến

Do đó: ΔCAD cân tại C

Ta có: ΔCAD cân tại C

mà CM là đường cao

nên CM là phân giác của góc ACD

=>CB là phân giác của góc ACD

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB=DC

6 tháng 1 2017

xin lỗi mình chỉ biết làm phần b thôi

b)Vì tg ABC =TG DCM nên ABM^ =DCM^ (2 góc tương ứng)

Mà ABM^ & DCM^ ở vị trí so le trong nên AB//DC

vậy....

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

6 tháng 1 2017

a)Xét tam giác AMB và tam giác DMC có:

BM=CM(M là trung điểm của BC)

góc AMB=góc  DMC(2 góc đối đỉnh)

AM=DM(GT)

=>tam giác ABM= tam giác DMC(c.g.c)

=>AB=DC(2 cạnh tương ứng)

b)Vì tam giác AMB= tam giác DMC(cmt)

=>góc ABM = góc DCM

mà 2 góc này ở vị trí so le trong

=>AB//DC

c)Xét tam giác ABM và tam giác ACM có:

AB=AC(tam giác ABC cân tại A)

AM là cạnh chung

BM=CM(M là trung điểm của cạnh BC)

=>tam giác ABM=tam giác ACM(c.c.c)

=>góc ACM=góc ABM(2 góc tương ứng)

mà góc ABM=gócDCM(cmt)

=>góc ACM= góc DCM

=>CB là tia phân giác của góc ACD

24 tháng 12 2021

a: Xét ΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔAMB=ΔCMD

28 tháng 12 2017

tự vẽ hik nhk!

a)xét tam giác AMB và tam giác DMC có:

AM= MD(gt)

góc AMB=CMD(đđ)

BM=MC(gt)

suy ra hai tam giac bang nhau

b)ta có tam giác abm =tam giac dcm

suy ra ab=cd

xet tam giacacm và tam giác cmd có

am=md

cm:cạnh chung

ac=cd(=ab)

suy ra hai tam giac bang nhau 

suy ra goc acm=dcm

suy ra cb la tia pg cua acd

4 tháng 1 2019

a) Xét tam giác ABM và tam giác DCM có:
AM = DM (gt)
BM = MC (gt)
góc BMA = góc DMC (2 góc đối đỉnh)
=> tam giác ABM = tam giác DCM (c.g.c)
b) Vì tam giác ABM = tam giác DCM (cmt)
=> góc ABM = góc DCM (2 góc tương ứng)
mà 2 góc này so le trong
=> AB//DC
c) Xét tam giác ABM và tam giác ACM có:
AB = AC (gt)
BM = MC (gt
AM là cạnh chung
=> tam giác ABM bằng tam giác ACM (c.c.c)
=> góc BMA bằng góc AMC
=> góc BMA = góc AMC = 1/2(góc BMA + góc AMC)
mà góc BMA + góc AMC = 180o (2 góc kề bù)
=> góc BMA = góc AMC = 1/2.180o = 90o
=> AM vuông góc với BC

a: Xét ΔABM và ΔDCM có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó:ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

a: Xét ΔAMB và ΔDMC có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

Suy ra: AB//DC và AB=DC; \(\widehat{ACD}=90^0\)

b:

Ta có: ABDC là hình chữ nhật

nên AD=BC

XétΔBCA và ΔDAC có 

BC=DA

CA chung

BA=DC

Do đó: ΔBCA=ΔDAC

10 tháng 1 2022

a: Xét ΔAMB và ΔDMC có 

MA=MD

AMB^=DMC^

MB=MC

Do đó: ΔAMB=ΔDMC

Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

mà BAC^=900

nên ABDC là hình chữ nhật

Suy ra: AB//DC và AB=DC; ACD^=900

b:

Ta có: ABDC là hình chữ nhật

nên AD=BC

XétΔBCA và ΔDAC có 

BC=DA

CA chung

BA=DC

Do đó: ΔBCA=ΔDAC