Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ nhá!
a, Vì ^B = ^C
=> t/g ABC cân tại A
=> AB = AC
Vì tam giác ABC cân tại A nên đường cao AH cũng là đường trung tuyến
=> HB = HC
XÉt t//g ABH và t/g ACH có :
AB = AC ( cmt )
^B = ^C ( gt )
HB = HC ( cmt )
=> t/ ABH = t/g ACH ( g.c.g)
b, Vì HA = HB (Cmt)
AH vuông góc BC
=> AH là trung trực BC
c, Vì tam giác ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}\) (1)
Xét t/g HMB và t/g HNC có:
HB = HC (cmt)
^B = ^C
^BHM = ^CHN ( = 90 độ )
=> t/g HMB = t/g HNC ( ch-gn )
=>HM = HN
Xét t/g AMH và t/g ANH có :
^AMH = ^ANH (=90 độ)
AH chung
HM = HN ( cmt)
=> t/g AMH = t/g ANH (ch-cgv)
=>AM = AN
=> t/g AMN cân tại A
=> \(\widehat{AMN}=\widehat{ANM}=\frac{180^o-\widehat{MAN}}{2}\) (2)
Từ (1) và (2) => ^AMN = ^ABC
MÀ 2 góc này ở vị trí đồng vị
=> MN // BC (ĐPCM)
a: Ta có: H và D đối xứng với nhau qua AB
nên AH=AD; BH=BD
=>ΔHAD cân tại A
=>AB là phân giác của góc HAD(1)
Ta có H và E đối xứngvới nhau qua AC
nên AH=AE; CH=CE
=>ΔAHE cân tại A
=>AC là phân giác của góc HAE(2)
Từ (1) và (2) suy ra góc DAE=2xgóc BAC=180 độ
=>D,A,E thẳng hàng
b: Xét ΔAHB và ΔADB có
AH=AD
BH=BD
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: góc ADB=90 độ
=>BD vuông góc với DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
HC=EC
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: góc AEC=90 độ
=>CE vuông góc với ED(4)
Từ (3) và (4) suy ra BDEC là hình thang vuông
c: ED=AE+AD
=AH+AH=2AH
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó: ΔDHE vuông tại H
a: Xet ΔAHB và ΔAHC có
AB=AC
AH chung
HB=HC
=>ΔAHB=ΔAHC
b: Xet ΔAMH vuông tại M và ΔANH vuông tại N co
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN và HM=HN
=>ΔHMN cân tại H
c: Xét ΔABC có AM/AB=AN/AC
nên MN//CB
ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung
thằng giồ phí thời gian người khác
biết chết liền